Skip to main content
Log in

Entanglement, quantum correlations in a system of the two coupled atoms interacting with a thermal field under intensity-dependent coupling

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We study the time evolution behavior of entanglement, the quantum and classical correlations in a system of two coupled two-level atoms interacting with a single mode thermal field. In the model, one atom is in an isolated state and the other is coupled with a small external environment (a single mode thermal field). The effects of mean photon number of thermal field, atom-field coupling strength and intensity-dependent coupling on the evolution processes of the four quantities are analyzed and discussed thoroughly. The results show the sudden deaths and sudden births of various correlations occur and quantum correlation beyond entanglement may be observed in the certain time intervals. It has been seen clearly that the maximal values of various correlations degrade with the increase of mean photon number, atom-field coupling strength and intensity-dependent coupling. The evolution patterns of various correlations are strongly dependent on the about three parameters. Particularly, the time evolution of classical correlation is not consistent with that of quantum correlations during the observed period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M Vogel Contemporary Physics. 52 604 (2011)

    Article  ADS  Google Scholar 

  2. S Choudhury and S Panda Universe. 6 79 (2020)

    Article  ADS  Google Scholar 

  3. T Yu and J Eberly Science. 323 598 (2009)

    Article  ADS  Google Scholar 

  4. X Yan Chaos Solitons &Fractals. 41 1645 (2009)

    Article  ADS  Google Scholar 

  5. M Abdel-Aty Abdel-Aty 19 511 (2009)

    Google Scholar 

  6. Q H Liao and G Y Fang Commun. 284 301 (2001)

    ADS  Google Scholar 

  7. C E López, G Romero and F Lastra Rev. Lett. 101 080503 (2008)

    Article  ADS  Google Scholar 

  8. B P Lanyon, M Barbieri, M P Almeida and A G White Phys Rev. Lett. 101 200501 (2008)

    Article  ADS  Google Scholar 

  9. A Datta, A Shaji and C M Caves Phy Rev. Lett. 100 050502 (2008)

    Article  ADS  Google Scholar 

  10. R Dillenschneider and E Lutz EPL. 88 50003 (2009)

    Article  ADS  Google Scholar 

  11. B Gegentuya, S Sachuerfu and Z Gerile Int J. Theor. Phys. 59 2951 (2020)

    Article  Google Scholar 

  12. H Ollivier and W H Zurek Phys. Rev. Lett. 88 017901 (2001)

    Article  ADS  Google Scholar 

  13. M D Lang and C M Caves Phys. Rev. Lett. 105 150501 (2010)

    Article  ADS  Google Scholar 

  14. B Jia, G Bin, L Yan-Hong, S Long-Hui and S Zhao-Yu Physica B: Condensed Matter. 593 412297 (2020)

    Article  Google Scholar 

  15. G Chitradeep Brazilian Journal of Physics. 51 1466 (2021)

    Article  Google Scholar 

  16. B Dakić, V Vedral and C Brukner Phys Rev. Lett. 105 190502 (2010)

    Article  ADS  Google Scholar 

  17. T Werlang, S Souza, F F Fanchini and C J Villas Boas Phys Rev. A 80 024103 (2009)

    Article  ADS  Google Scholar 

  18. J S Xu C F Li C J Zhang and X Y Xu Y S Zhang and G C Guo Phys Rev. A 82 042328 (2010)

  19. B Wang, Z Y Xu, Z Q Chen and M Feng Phys Rev. A 81 014101 (2010)

    Article  ADS  Google Scholar 

  20. F Altintas and R Eryigit Ann. Phys. 327 3084 (2012)

    Article  ADS  Google Scholar 

  21. L Mazzola, J Piilo and S Maniscalco Phys Rev. Lett. 104 200401 (2010)

    Article  ADS  Google Scholar 

  22. G Galve, G L Giorgi and R Zambrini Phys Rev. A. 83 012102 (2011)

    Article  ADS  Google Scholar 

  23. A A Qasimi and D F V James Phys. Rev. A. 83 032101 (2011)

    Article  ADS  Google Scholar 

  24. D Girolami, M Paternostro and G Adesso J. Phys. A: Math. Theor. 44 352002 (2011)

    Article  Google Scholar 

  25. D Z Rossatto, T Werlang, E I Duzzoioni and C J V Boas Phys Rev. Lett. 107 153601 (2011)

    Article  ADS  Google Scholar 

  26. F Ciccarello and V Giovannetti Phys. Rev. A. 85 010102 (2012)

    Article  ADS  Google Scholar 

  27. X Y Hu, H Fan, D L Zhou and W M Liu Phys Rev. A. 85 032102 (2012)

    Article  ADS  Google Scholar 

  28. F Altintas and R Eryigit Phys. Rev. A. 87 022124 (2013)

    Article  ADS  Google Scholar 

  29. F Altintas, A U C Hardal and O E Mustecaplioglu Phys Rev. E. 90 032102 (2014)

    Article  ADS  Google Scholar 

  30. G L Deçordi and A Vidiella-Barranco J. Mod. Optics. 65 1879 (2018)

    Article  ADS  Google Scholar 

  31. F Altintas and R Eryigit J. Phys. B: At. Mol. Opt. Phys. 44 125501 (2011)

    Article  ADS  Google Scholar 

  32. F Altintas and R Eryigit Phys. Lett. A. 374 4283 (2010)

    Article  ADS  Google Scholar 

  33. F Altintas Opt. Commun. 283 5264 (2010)

    Article  ADS  Google Scholar 

  34. J S Jin and C S Yu P Pei, F S Song, J. Opt. Soc. Am. B. 27 1799 (2010)

  35. G Karpat and Z Gedi Phys. Lett. A. 376 4166 (2011)

    Article  ADS  Google Scholar 

  36. F Altintas and R Eryigit Phys. Lett. A. 376 1791 (2012)

    Article  ADS  Google Scholar 

  37. F Altintas, A Kurt and R Eryigit Phys .Lett. A. 377 53 (2012)

    Article  ADS  Google Scholar 

  38. R Auccaise et al. Phys. Rev. Lett. 107 140403 (2011)

  39. Q H He, J B Xu, D X Yao and Y Q Zhang Phys. Rev. A. 84 022312 (2011)

    Article  ADS  Google Scholar 

  40. A Streltsov, H Kampermann and D Bruß Phys. Rev. Lett. 107 170502 (2011)

    Article  ADS  Google Scholar 

  41. G L Deçordi and A Vidiella-Barranco Opt. Commun. 475 126233 (2020)

    Article  Google Scholar 

  42. B Buck and C V Sukumar Phys. Letts. A. 81 132 (1981)

    Article  ADS  Google Scholar 

  43. V Buzek J. Mod. Opt. 36 1151 (1989)

    Article  ADS  Google Scholar 

  44. N Zidan pplied Mathematics. 5 2485 (2014)

    Google Scholar 

  45. N Zidan pplied Mathematics. 5 2485 (2014)

  46. W K Wootters Phys. Rev. Lett. 80 2245 (1998)

    Article  ADS  Google Scholar 

  47. M Horodecki, P Horodecki and R Horodecki Phys. Lett. A 223 1–8 (1996)

    Article  ADS  Google Scholar 

  48. Peres Phys Rev. Lett. 77 1413 (1996)

    Article  ADS  Google Scholar 

  49. P Horodecki Phys. Lett. A 232 333 (1997)

  50. C Z Wang, C X Li, L Y Nie and J F Li J. Phys. B: At. Mol. Opt. Phys. 44 015503 (2011)

    Article  ADS  Google Scholar 

  51. A Bera, T Das, D Sadhukhan and S S Roy A Sen U Sen Rep Prog. Phys. 81 024001 (2018)

  52. M Daoud and R A Laamara Phys. Lett. A 376 2361 (2012)

    Article  ADS  Google Scholar 

  53. K Micadei et al. Nat. Commun. 10 2456 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sachuerfu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D.M., Sachuerfu, S., Su, S.L. et al. Entanglement, quantum correlations in a system of the two coupled atoms interacting with a thermal field under intensity-dependent coupling. Indian J Phys 97, 367–378 (2023). https://doi.org/10.1007/s12648-022-02436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02436-7

Keywords

Navigation