Skip to main content
Log in

Organic impurity preconcentration by a multimembrane inlet system of a mass spectrometer

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Using an inlet system comprising a series of membranes sequentially operating in a nonstationary flow regime, it is possible to increase the concentration of an organic impurity in a sample immediately before introduction into a mass spectrometer. The degree of preconcentration calculated in the approximation of a small response time of the membranes is proportional to (k j /k m )N, where k j and k m are the membrane permeabilities for the impurity and matrix, respectively, and N is the number of membranes. For a butane admixture in air, the calculated relative effect for an inlet using two membranes instead of one is ∼40, while the experimental verification using 0.1-mm-thick poly(dimethylsiloxane) membranes showed an increase in the degree of preconcentration by a factor of ∼14. It is possible to approach the theoretical value by decreasing the time of impurity diffusion through the membrane at the expense of reduced membrane thickness. It is expected that multimembrane inlet systems will be especially effective in environmental monitoring, where a high sensitivity of the analysis is required with respect to toxic organic substances possessing k j /k m ratios much greater as compared to that of butane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Maden and M. J. Hayward, Anal. Chem. 68, 1805 (1996).

    Article  Google Scholar 

  2. M. A. LaPack, J. C. Tou, V. L. McGuffin, and C. G. Enke, J. Membr. Sci. 86, 263 (1994).

    Article  Google Scholar 

  3. V. T. Kogan, O. S. Viktorova, G. Yu. Gladkov, et al., Prib. Tekh. Éksp., No. 1, 129 (2001).

  4. R. A. Ketola, M. Ojala, H. Sorsa, et al., Anal. Chim. Acta 349, 359 (1997).

    Article  Google Scholar 

  5. T. Kotiaho, F. R. Lauritsen, T. K. Choudhury, et al., Anal. Chem. 63, 875A (1991).

    Article  Google Scholar 

  6. H. J. Degn, J. Microbiol. Methods 15, 185 (1992).

    Article  Google Scholar 

  7. F. R. Lauritsen and D. Lloyd, Mass Spectrometry for the Characterization of Microorganisms, Ed. by C. Fenselau (American Chemical Society, Washington, DC, 1994), ACS Symp. Ser. 541, pp. 91–106.

    Google Scholar 

  8. R. G. Cooks and T. Kotiaho, Pollution Prevention in Industrial Processes, Ed. by J. J. Breen and M. J. Dellarco (American Chemical Society, Washington, DC, 1994), ACS Symp. Ser. 508, pp. 126–154.

    Google Scholar 

  9. S. J. Bauer and R. G. Cooks, Am. Lab. (Shelton, Conn.) 25, 36 (1993).

    Google Scholar 

  10. L. E. Dejarme, S. J. Bauer, R. G. Cooks, et al., Rapid Commun. Mass Spectrom. 7, 935 (1993).

    Article  Google Scholar 

  11. M. E. Cisper, C. G. Gill, L. F. Townsend, and P. H. Hemberger, Anal. Chem. 67, 1413 (1995).

    Article  Google Scholar 

  12. V. T. Kogan, A. K. Pavlov, Yu. V. Chichagov, et al., Field Anal. Chem. Technol. 1(6), 331 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 27, No. 23, 2001, pp. 9–15.

Original Russian Text Copyright © 2001 by Kogan, Victorova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogan, V.T., Victorova, O.S. Organic impurity preconcentration by a multimembrane inlet system of a mass spectrometer. Tech. Phys. Lett. 27, 984–986 (2001). https://doi.org/10.1134/1.1432323

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1432323

Keywords

Navigation