Skip to main content
Log in

Cyclotron resonance in quasi-two-dimensional conductors

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theoretical analysis is made of the resonant absorption of RF electromagnetic wave energy in layered conductors having a quasi-two-dimensional electron energy spectrum. An analysis is made of the influence of possible drift of carriers into the conductor and their Fermi-liquid interaction on the position of the cyclotron resonance lines. A reason is given for the substantial difference between the cyclotron effective masses determined from the temperature dependence of the amplitude of the Shubnikov-de Haas oscillations and from measurements of the cyclotron resonance frequencies in [5–7]. It is shown that by means of an experimental investigation of cyclotron resonance in a magnetic field parallel to the layers, it is possible to find the carrier velocity distribution at the Fermi surface in layered organic conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Kartsovnik, V. N. Laukhin, V. N. Nizhankovskii, and A. A. Ignat’ev, Pis’ma Zh. Éksp. Teor. Fiz. 47, 302 (1988) [JETP Lett. 47, 363 (1988)].

    Google Scholar 

  2. M. V. Kartsovnik, P. A. Kononovich, V. N. Laukhin, and I. F. Shchegolev, Pis’ma Zh. Éksp. Teor. Fiz. 48, 498 (1988) [JETP Lett. 48, 541 (1988)].

    ADS  Google Scholar 

  3. I. D. Parker, D. D. Pigram, R. H. Friend, et al., Synth. Met. 27, A387 (1988).

    Google Scholar 

  4. I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Consultants Bureau, New York, 1973).

    Google Scholar 

  5. S. V. Demishev, N. E. Sluchanko, A. V. Semeno, and N. A. Samarin, Pis’ma Zh. Éksp. Teor. Fiz. 61, 299 (1995) [JETP Lett. 61, 313 (1995)].

    Google Scholar 

  6. S. V. Demishev, A. V. Semeno, N. E. Sluchanko, et al., Phys. Rev. B 53, 12794 (1996).

    Google Scholar 

  7. S. V. Demishev, A. V. Semeno, N. E. Sluchanko, et al., Zh. Éksp. Teor. Fiz. 111, 979 (1997) [JETP 84, 540 (1997)].

    Google Scholar 

  8. M. Ya. Azbel’ and É. A. Kaner, Zh. Éksp. Teor. Fiz. 32, 896 (1957) [Sov. Phys. JETP 5, 730 (1957)].

    Google Scholar 

  9. M. Ya. Azbel’ and V. G. Peschanskii, Pis’ma Zh. Éksp. Teor. Fiz. 5, 26 (1967) [JETP Lett. 5, 19 (1967)].

    Google Scholar 

  10. L. D. Landau, Zh. Éksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1956)].

    Google Scholar 

  11. V. P. Silin, Zh. Éksp. Teor. Fiz. 33, 495 (1957) [Sov. Phys. JETP 6, 387 (1958)].

    MATH  Google Scholar 

  12. A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).

    Google Scholar 

  13. V. P. Silin, Zh. Éksp. Teor. Fiz. 35, 1243 (1958) [Sov. Phys. JETP 8, 870 (1958)].

    MATH  Google Scholar 

  14. V. P. Silin, Usp. Fiz. Nauk 93, 185 (1967).

    Google Scholar 

  15. V. P. Silin, Fiz. Met. Metalloved. 29, 681 (1970).

    Google Scholar 

  16. V. N. Bagaev, V. I. Okulov, and E. A. Pamyatnykh, Pis’ma Zh. Éksp. Teor. Fiz. 27, 156 (1978) [JETP Lett. 27, 144 (1978)].

    Google Scholar 

  17. V. G. Peschanskii, Zh. Éksp. Teor. Fiz. 114, 676 (1998) [JETP 87, 369 (1998)].

    Google Scholar 

  18. E. H. T. Reuter and E. H. Sondheimer, Proc. R. Soc. London 195, 336 (1948).

    ADS  Google Scholar 

  19. M. Ya. Azbel’ and V. G. Peschanskii, Zh. Éksp. Teor. Fiz. 54, 477 (1968) [Sov. Phys. JETP 27, 260 (1968)].

    Google Scholar 

  20. V. G. Peschanskii, O. Yung, and K. Yasemides, Fiz. Nizk. Temp. 6, 479 (1980) [Sov. J. Low Temp. Phys. 6, 294 (1980)].

    Google Scholar 

  21. D. Pines and P. Nozieres, Theory of Quantum Liquids (Benjamin, New York, 1966; Mir, Moscow, 1967).

    Google Scholar 

  22. A. S. Kondrat’ev and A. E. Kuchma, Electron Liquid of Normal Metals (Leningrad. Gos. Univ., Leningrad, 1980).

    Google Scholar 

  23. L. A. Falkovsky, Adv. Phys. 32, 753 (1983).

    Article  ADS  Google Scholar 

  24. V. I. Okulov and V. V. Ustinov, Fiz. Nizk. Temp. 5, 213 (1979) [Sov. J. Low Temp. Phys. 5, 101 (1979)].

    Google Scholar 

  25. V. G. Peschansky, Sov. Sci. Rev., Sect. A 16, 1 (1992).

    Google Scholar 

  26. M. Ya. Azbel’, Zh. Éksp. Teor. Fiz. 39, 400 (1960) [Sov. Phys. JETP 12, 283 (1960)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 118, No. 2, 2000, pp. 475–482.

Original Russian Text Copyright © 2000 by A. Peschanski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), V. Peschanski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peschanskii, A.V., Peschanskii, V.G. Cyclotron resonance in quasi-two-dimensional conductors. J. Exp. Theor. Phys. 91, 416–422 (2000). https://doi.org/10.1134/1.1312002

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1312002

Keywords

Navigation