Skip to main content
Log in

Modeling of the Critical State of Layered Superconducting Structures with Inhomogeneous Layers

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In this paper, an approach to calculating the critical state of layered structures consisting of inhomogeneous superconducting layers is proposed. The method is based on the numerical solution of one-dimensional Ginzburg–Landau equations generalized for an inhomogeneous plate. The method makes it possible to obtain dependences of the critical current on the magnetic field, as well as the current and magnetic field distribution over the layers. The averaged critical current of the layered structures consisting of inhomogeneous layers is compared with the averaged critical current of the layered structures consisting of homogeneous layers. It is found that with a small number of layers and relatively low external magnetic field, the critical current of layered structures consisting of homogeneous layers may exceed that of structures consisting of inhomogeneous layers. On the contrary, with the increase in the number of layers and/or external magnetic field strength, the critical current of layered structures consisting of inhomogeneous layers exceeds the critical current of structures consisting of homogeneous layers. The pinning force in the structures consisting of inhomogeneous layers is higher than in the structures consisting of homogeneous layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. Yu. Vodolazov, G. Berdiyorov, and F. M. Peeters, Phys. C (Amsterdam, Neth.) 552, 64 (2018).

  2. D. Yu. Vodolazov, Yu. P. Korneeva, A. V. Semenov, A. A. Korneev, and G. N. Goltsman, Phys. Rev. B 92, 104503 (2015).

    Article  ADS  Google Scholar 

  3. A. R. Pack, J. Carlson, S. Wadsworth, and M. K. Transtrum, Phys. Rev. B 101, 144504 (2020).

    Article  ADS  Google Scholar 

  4. Yu. P. Korneeva, D. Yu. Vodolazov, A. V. Semenov, I. N. Florya, N. Simonov, E. Baeva, A. A. Korneev, G. N. Goltsman, and T. M. Klapwijk, Phys. Rev. Appl. 9, 064037 (2018).

    Article  ADS  Google Scholar 

  5. A. N. Moroz, A. N. Maksimova, V. A. Kashurnikov, and I. A. Rudnev, IEEE Trans. Appl. Supercond. 28, 8000705 (2018).

    Article  Google Scholar 

  6. V. A. Kashurnikov, A. N. Maksimova, A. N. Moroz, and I. A. Rudnev, Supercond. Sci. Technol. 31, 115003 (2018).

    Article  Google Scholar 

  7. V. A. Kashurnikov, A. N. Maksimova, I. A. Rudnev, and D. S. Odintsov, Phys. Solid State 57, 1726 (2015).

    Article  ADS  Google Scholar 

  8. K. S. Grishakov, P. N. Degtyarenko, N. N. Degtyarenko, V. F. Elesin, and V. S. Kruglov, Russ. Phys. J. 52, 11 (2009).

    Article  Google Scholar 

  9. K. S. Grishakov, P. N. Degtyarenko, N. N. Degtyarenko, V. F. Elesin, and V. S. Kruglov, Phys. Proc. 36 (2012).

  10. P. I. Bezotosnyi, S. Yu. Gavrilkin, A. N. Lykov, and A. Yu. Tsvetkov, Bull. Lebedev Phys. Inst. 41, 153 (2014).

    Article  ADS  Google Scholar 

  11. P. I. Bezotosnyi, S. Yu. Gavrilkin, A. N. Lykov, and A. Yu. Tsvetkov, Bull. Lebedev Phys. Inst. 42, 1 (2015).

    Article  ADS  Google Scholar 

  12. P. I. Bezotosnyi, S. Yu. Gavrilkin, A. N. Lykov, and A. Yu. Tsvetkov, Phys. Solid State 57, 1300 (2015).

    Article  ADS  Google Scholar 

  13. P. I. Bezotosnyi, S. Yu. Gavrilkin, K. A. Dmitrieva, A. N. Lykov, and A. Yu. Tsvetkov, Phys. Solid State 61, 94 (2019).

    Article  ADS  Google Scholar 

  14. P. I. Bezotosnyi, S. Yu. Gavrilkin, K. A. Dmitrieva, A. N. Lykov, and A. Yu. Tsvetkov, Bull. Lebedev Phys. Inst. 47, 48 (2020).

    Article  ADS  Google Scholar 

  15. P. I. Bezotosnyi, K. A. Dmitrieva, S. Yu. Gavrilkin, A. N. Lykov, and A. Yu. Tsvetkov, IEEE Trans. Appl. Supercond. 31, 7500107 (2021).

    Article  Google Scholar 

  16. P. I. Bezotosnyi and K. A. Dmitrieva, Phys. Solid State 63 (2021, in press).

  17. S. Yu. Gavrilkin, A. N. Lykov, A. Yu. Tsvetkov, and P. I. Bezotosnyi, Bull. Lebedev Phys. Inst. 45, 51 (2018).

    Article  ADS  Google Scholar 

  18. A. N. Lykov, A. Yu. Tsvetkov, and G. F. Zharkov, J. Exp. Theor. Phys. 101, 341 (2005).

    Article  ADS  Google Scholar 

  19. A. N. Lykov and A. Yu. Tsvetkov, Phys. Rev. B 76, 144517 (2007).

    Article  ADS  Google Scholar 

Download references

Funding

The study was carried out within the State Assignment of the Ministry of Science and Higher Education of the Russian Federation, project no. 0023-2019-0005 “Physics of High-Temperature Superconductors and New Quantum Materials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Bezotosnyi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezotosnyi, P.I., Dmitrieva, K.A. Modeling of the Critical State of Layered Superconducting Structures with Inhomogeneous Layers. Phys. Solid State 63, 1605–1610 (2021). https://doi.org/10.1134/S106378342110005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342110005X

Keywords:

Navigation