Skip to main content
Log in

Magnetic-breakdown oscillations of the thermoelectric field in layered conductors

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The response of an electron system to nonuniform heating of layered conductors with an arbitrary quasi-two-dimensional electron energy spectrum in a strong magnetic field B is investigated theoretically in the case when cyclotron frequency ω c is much higher than the frequency 1/τ of collisions between charge carriers. In the case of a multisheet Fermi surface (FS), we calculate the dependence of the thermoelectric coefficients on the magnitude and orientation of the magnetic field in the vicinity of the Lifshitz topological transition when the FS connectivity changes under the action of an external force (e.g., pressure) on the conductor. Upon a decrease in the spacing between individual pockets (sheets) of the FS, conduction electrons can tunnel as a result of the magnetic breakdown from one FS sheet to another; their motion over magneticbreakdown trajectories becomes complicated and entangled. The thermoelectric field exhibits a peculiar dependence on the magnetic field: for a noticeable deviation of vector B from the normal through angle ϑ to the layers, the thermoelectric field oscillates as a function of tanϑ. The period of these oscillations contains important information on the distance between individual FS sheets and their corrugation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. van Hove, Phys. Rev. 89, 1189 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  2. I. M. Lifshits, Sov. Phys. JETP 11, 1130 (1960).

    Google Scholar 

  3. M. A. Krivoglaz and Tyu Khao, Fiz. Met. Metalloved. 21, 817 (1966).

    Google Scholar 

  4. V. G. Vaks, A. V. Trefilov, and S. V. Fomichev, Sov. Phys. JETP 53, 830 (1981).

    Google Scholar 

  5. A. A. Varlamov and A. V. Pantsulaya, Sov. Phys. JETP 62, 1263 (1985).

    Google Scholar 

  6. A. A. Abrikosov and A. V. Pantsulaya, Sov. Phys. Solid State 28, 1195 (1986).

    Google Scholar 

  7. G. P. Mikitik and Yu. V. Sharlai, Phys. Rev. B 90, 155122 (2014).

    Article  ADS  Google Scholar 

  8. N. B. Brandt, N. I. Ginzburg, and T. A. Ignat’eva, Sov. Phys. JETP 22, 61 (1965).

    ADS  Google Scholar 

  9. E. S. Itskevich and A. N. Voronovskii, JETP Lett. 4, 151 (1966).

    ADS  Google Scholar 

  10. W. Chu et al., Phys. Rev. 131, 214 (1970).

    Article  Google Scholar 

  11. T. F. Smith, J. Low Temp. Phys. 11, 584 (1973).

    Article  ADS  Google Scholar 

  12. Yu. P. Gaidukov, N. P. Danilova, and M. B. Shcherbina-Samoilova, JETP Lett. 25, 479 (1977).

    ADS  Google Scholar 

  13. Yu. P. Gaidukov, N. P. Danilova, and M. B. Shcherbina-Samoilova, Sov. J. Low Temp. Phys. 4, 124 (1978).

    Google Scholar 

  14. Yu. P. Gaidukov, N. P. Danilova, and M. B. Shcherbina-Samoilova, Sov. Phys. JETP 50, 1018 (1979).

    ADS  Google Scholar 

  15. D. R. Overcash et al., Phys. Rev. Lett. 46, 287 (1981).

    Article  ADS  Google Scholar 

  16. V. S. Egorov and A. N. Fedorov, Sov. Phys. JETP 58, 959 (1983).

    Google Scholar 

  17. V. S. Egorov and S. R. Varyukhin, JETP Lett. 39, 621 (1984).

    ADS  Google Scholar 

  18. S. L. Bud’ko, A. N. Voronovskii, A. G. Gaponchenko, and E. S. Itskevich, Sov. Phys. JETP 59, 454 (1984).

    Google Scholar 

  19. N. V. Zavaritskii, V. I. Makarov, and A. A. Yurgens, JETP Lett. 42, 182 (1985).

    ADS  Google Scholar 

  20. A. N. Velikodnyi, N. V. Zavaritskii, T. A. Ignat’eva, and A. A. Yurgens, JETP Lett. 43, 773 (1986).

    ADS  Google Scholar 

  21. S. L. Bud’ko, A. G. Gaponchenko, and E. S. Itskevich, JETP Lett. 47, 128 (1988).

    ADS  Google Scholar 

  22. N. V. Zavaritskii, in Selected Works of I. M. Lifshitz, Electronic Theory of Metals. Polymers and Biopolymers (Nauka, Moscow, 1994), Supplement, p. 432 [in Russian].

    Google Scholar 

  23. O. Galbova, V. G. Peschanskii, and D. I. Stepanenko, Low Temp. Phys. 41, 537 (2015).

    Article  ADS  Google Scholar 

  24. P. A. Goddard, S. J. Blundell, J. Singleton, et al., Phys. Rev. B 69, 174509 (2004).

    Article  ADS  Google Scholar 

  25. M. V. Kartsovnik, G. Andres, S. V. Simonov, W. Biberacher, I. Sheikin, N. D. Kushch, and H. Muller, Phys. Rev. Lett. 96, 16601 (2006).

    Article  Google Scholar 

  26. A. F. Bangura, P. A. Goddard, J. Singleton, et al., Phys. Rev. B 76, 052510 (2007).

    Article  ADS  Google Scholar 

  27. T. Helm, M. V. Kartsovnik, I. Sheikin, et al., Phys.Rev. Lett. 105, 247002 (2010).

    Article  ADS  Google Scholar 

  28. M. V. Kartsovnik, T. Helm, C. Putze, et al., New J. Phys. 13, 015001 (2011).

    Article  ADS  Google Scholar 

  29. J. Eun and Chakravarty, Phys. Rev. B 84, 094506 (2011).

    Article  ADS  Google Scholar 

  30. T. Helm, M. V. Kartsovnik, C. Proust, et al., Phys. Rev. B 92, 094501 (2015).

    Article  ADS  Google Scholar 

  31. A. A. Nikolaeva, L. A. Konopko, T. E. Huber, A. K. Kobylyanskaya, and G. I. Parai, Thermoelectricity, No. 4, 1607 (2015).

    Google Scholar 

  32. A. A. Nikolaeva, L. A. Konopko, A. V. Tsurkan, and E. F. Moloshnik, J. Surf. Eng. Appl. Electrochem. 52, 2016 (2016).

    Google Scholar 

  33. R. Rousseau, M. L. Doulet, E. Canadell, R. P. Shibaeva, S. S. Khasanov, L. P. Rosenberg, N. D. Kusch, and E. B. Yagubskii, J. Phys. 1 6, 1527 (1996).

    Google Scholar 

  34. A. A. Slutskin, Sov. Phys. JETP 31, 61 (1970).

    ADS  Google Scholar 

  35. A. A. Slutskin, Doctoral Dissertation (Phys. Tech. Inst. Low Temp., Acad. Sci. Ukr. SSR, Kharkov, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Peschanskii.

Additional information

Original Russian Text © V.G. Peschanskii, O. Galbova, R. Hasan, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 6, pp. 1218–1226.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peschanskii, V.G., Galbova, O. & Hasan, R. Magnetic-breakdown oscillations of the thermoelectric field in layered conductors. J. Exp. Theor. Phys. 123, 1060–1067 (2016). https://doi.org/10.1134/S1063776116110273

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116110273

Navigation