Skip to main content
Log in

Stability of the superconducting state of a multiconductor current-carrying element during the induction of current in it

  • Solids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A model which permits estimation of the temporal variation of the temperature and the current in the components of a superconducting cable is proposed. The permissible currents which can be induced in a six-strand current-carrying element without destroying its superconducting properties are determined. It is shown that in the presence of inductive coupling between the conductors, the position of the cable component in which instability is initiated is not a regular function of the current induction rate if there is a spread in the nonlinearity parameters of the current-voltage characteristics of the components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Brechna, Superconducting Magnet Systems, Springer-Verlag, Berlin (1973); Mir, Moscow (1976).

    Google Scholar 

  2. V. A. Al’tov, V. B. Zenkevich, M. G. Kremlev, and V. V. Sychev, Stabilization of Superconducting Magnetic Systems, Plenum Press, New York (1977) [cited Russian original: Énergoatomizdat, Moscow (1984)].

    Google Scholar 

  3. M. N. Wilson, Superconducting Magnets, Oxford University Press, London (1983); Mir, Moscow (1985).

    Google Scholar 

  4. A. V. Gurevich, R. G. Mints, and A. L. Rakhmanov, The Physics of Composite Superconductors, CRC Press, Boca Raton, Fla. (1995).

    Google Scholar 

  5. R. I. Schermer and B. P. Turck, Adv. Cryog. Eng. 26, 599 (1980).

    Google Scholar 

  6. G. Ries, Cryogenics 20, 513 (1980).

    Article  Google Scholar 

  7. G. Reiter, Cryogenics 22, 451 (1982).

    Article  Google Scholar 

  8. M. Iwakuma, H. Kanetaka, K. Tasaki, K. Funaki, M. Takeo, and K. Yamafuji, Cryogenics 30, 686 (1990).

    Article  Google Scholar 

  9. N. Amemiya, I. Hlasnik, and O. Tsukamoto, Cryogenics 33, 889 (1993).

    Article  Google Scholar 

  10. T. Shimada, Y. Takada, K. Okazaki, M. Tsuda, and A. Ishiyama, Cryogenics 34, 555 (1995).

    Google Scholar 

  11. L. Krempasky and C. Schmidt, Appl. Phys. Lett. 66, 1545 (1995).

    Article  ADS  Google Scholar 

  12. T. Verhaege, P. Estop, J. P. Tavergnier et al., IEEE Trans. Magn. MAG-30, 1911 (1994).

    ADS  Google Scholar 

  13. G. L. Dorofejev, A. B. Imenitov, and E. Yu. Klimenko, Cryogenics 20, 307 (1980).

    Article  Google Scholar 

  14. V. E. Keilin and V. R. Romanovskii, Cryogenics 33, 986 (1993).

    Article  Google Scholar 

  15. E. Yu. Klimenko, N. N. Martovetskii, and S. I. Novikov, Dokl. Akad. Nauk SSSR 261, 1350 (1981) [Sov. Phys. Dokl. 26, 1180 (1981)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 68, 39–44 (March 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanovskii, V.R. Stability of the superconducting state of a multiconductor current-carrying element during the induction of current in it. Tech. Phys. 43, 302–306 (1998). https://doi.org/10.1134/1.1258914

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1258914

Keywords

Navigation