Skip to main content
Log in

Micromechanical modelling on the elastoplastic damage and irreversible critical current degradation of the twisted multi-filamentary Nb3Sn superconducting strand

多芯绞扭Nb3Sn超导股线弹塑性损伤和临界电流不可逆退化的细观力学建模

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Nb3Sn is widely accepted as the enabling technology for high field superconducting magnets. However, it is brittle and with strain-sensitive superconducting properties. In high field applications, Nb3Sn strand experiences significant elastoplastic strain or even damage which causes degradation in its current carrying capacity. In this work, a 3D mean-field homogenization model based on the incremental micromechanics scheme is developed to investigate the elastoplastic damage and irreversible degradation of the twisted multifilamentary Nb3Sn strand. The effective stress-strain curves and strain distribution in the Nb3Sn filaments are calculated for the strand under monotonic and cyclic loads. The invariant strain scaling law supplemented with the damage-induced reduction is adopted to characterize the irreversible degradation of the critical current. It is found that twisting plays an important role in elastoplastic damage and strain-induced critical current degradation. With the increasing of twist pitch, the strand becomes stiffer and the strain limit surpasses which the filaments start to damage sharply decreases. Both the accumulated residual strain and damage of the filaments contribute to the irreversible degradation of the critical current. The experimentally observed “strain irreversibility cliff” is the result of damage to the Nb3Sn filaments. From a mechanical point of view, a short twist pitch will be a good choice to alleviate the strain-induced irreversible degradation of the Nb3Sn strands.

摘要

Nb3Sn被广泛接受是实现高场超导磁体的关键材料. 然而, Nb3Sn是脆性材料且其超导性能具有应变敏感性. 在强磁场应用中, Nb3Sn股线会受到显著的弹塑性应变甚至损伤, 导致其载流能力下降. 本文基于细观力学方法建立了三维平均场均匀化模型, 研究多芯绞扭Nb3Sn超导股线的弹塑性损伤行为和临界电流的不可逆退化. 计算股线在单调和循环载荷作用下的等效应力-应变曲线以及Nb3Sn 内部的应变分布. 采用辅以损伤引起退化的应变不变量标度律来表征临界电流的不可逆退化. 研究发现, 绞扭对股线弹塑性损伤行为和应变导致的临界电流退化起着重要作用. 随着绞扭节距的增大, 复合股线的刚度增大, 应变极限(超过该极限时芯丝开始损伤)急剧减小. 累积残余应变和芯丝的损伤共同导致超导股线临界电流的不可逆退化. 实验观察到的“断崖式不可逆退化”是由于Nb3Sn芯丝的损伤造成的. 从力学的角度, 短绞节距是缓解应变引起超导股线临界电流不可逆退化的良好选择.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. den Ouden, S. Wessel, E. Krooshoop, and H. ten Kate, Application of Nb3Sn superconductors in high-field accelerator magnets, IEEE Trans. Appl. Supercond. 7, 733 (1997).

    Article  Google Scholar 

  2. D. Ciazynski, Review of Nb3Sn conductors for ITER, Fusion Eng. Des. 82, 488 (2007).

    Article  Google Scholar 

  3. X. Xu, A review and prospects for Nb3Sn superconductor development, Supercond. Sci. Technol. 30, 093001 (2017).

    Article  Google Scholar 

  4. R. G. Sharma, Superconductivity: Basics and Applications to Magnets (Springer International Publishing, Cham, 2015).

    Book  Google Scholar 

  5. M. T. Dylla, S. E. Schultz, and M. C. Jewell, Fracture strength distribution of individual Nb3Sn filaments, IEEE Trans. Appl. Supercond. 26, 1 (2016).

    Article  Google Scholar 

  6. A. Devred, I. Backbier, D. Bessette, G. Bevillard, M. Gardner, C. Jong, F. Lillaz, N. Mitchell, G. Romano, and A. Vostner, Challenges and status of ITER conductor production, Supercond. Sci. Technol. 27, 044001 (2014).

    Article  Google Scholar 

  7. N. Mitchell, M. Breschi, and V. Tronza, The use of Nb3 Sn in fusion: Lessons learned from the ITER production including options for management of performance degradation, Supercond. Sci. Technol. 33, 054007 (2020).

    Article  Google Scholar 

  8. X. J. Zheng, Preface: Mechanical perturbations induced quench: A challenge of superconductor mechanics. Natl. Sci. Rev. 10, nwad044 (2023).

    Article  Google Scholar 

  9. Y. H. Zhou, D. Park, and Y. Iwasa, Review of progress and challenges of key mechanical issues in high-field superconducting magnets, Natl. Sci. Rev. 10, nwad001 (2023).

    Article  Google Scholar 

  10. X. Zhang, and J. Qin, Mechanical effects: Challenges for high-field superconducting magnets, Natl. Sci. Rev. 10, nwac220 (2023).

    Article  Google Scholar 

  11. A. Nijhuis, R. P. Pompe van Meerdervoort, H. J. G. Krooshoop, W. A. J. Wessel, C. Zhou, G. Rolando, C. Sanabria, P. J. Lee, D. C. Larbalestier, A. Devred, A. Vostner, N. Mitchell, Y. Takahashi, Y. Nabara, T. Boutboul, V. Tronza, S. H. Park, and W. Yu, The effect of axial and transverse loading on the transport properties of ITER Nb3Sn strands, Supercond. Sci. Technol. 26, 084004 (2013).

    Article  Google Scholar 

  12. A. Nijhuis, Y. Ilyin, S. Wessel, E. Krooshoop, L. Feng, and Y. Miyoshi, Summary of ITER TF Nb3Sn strand testing under axial strain, spatial periodic bending and contact stress, IEEE Trans. Appl. Supercond. 19, 1516 (2009).

    Article  Google Scholar 

  13. L. Muzzi, V. Corato, A. della Corte, G. De Marzi, T. Spina, J. Daniels, M. Di Michiel, F. Buta, G. Mondonico, B. Seeber, R. Flükiger, and C. Senatore, Direct observation of Nb3Sn lattice deformation by high-energy x-ray diffraction in internal-tin wires subject to mechanical loads at 4.2 K, Supercond. Sci. Technol. 25, 054006 (2012).

    Article  Google Scholar 

  14. F. Shen, H. Zhang, C. Huang, and L. Li, Experimental study on strain sensitivity of internal-Tin Nb3Sn superconducting strand based on non-destructive technology, Physica C 584, 1353784 (2021).

    Article  Google Scholar 

  15. J. W. Ekin, Strain scaling law for flux pinning in practical superconductors. Part 1: Basic relationship and application to Nb3Sn conductors, Cryogenics 20, 611 (1980).

    Article  Google Scholar 

  16. D. M. J. Taylor, and D. P. Hampshire, The scaling law for the strain dependence of the critical current density in Nb3Sn superconducting wires, Supercond. Sci. Technol. 18, S241 (2005).

    Article  Google Scholar 

  17. A. Godeke, B. ten Haken, H. H. J. ten Kate, and D. C. Larbalestier, A general scaling relation for the critical current density in Nb3Sn, Supercond. Sci. Technol. 19, R100 (2006).

    Article  Google Scholar 

  18. W. D. Markiewicz, Elastic stiffness model for the critical temperature Tc of Nb3Sn including strain dependence, Cryogenics 44, 767 (2004).

    Article  Google Scholar 

  19. W. D. Markiewicz, Invariant temperature and field strain functions for Nb3Sn composite superconductors, Cryogenics 46, 846 (2006).

    Article  Google Scholar 

  20. R. Zhang, P. Gao, and X. Wang, Strain dependence of critical superconducting properties of Nb3Sn with different intrinsic strains based on a semi-phenomenological approach, Cryogenics 86, 30 (2017).

    Article  Google Scholar 

  21. J. W. Ekin, Unified scaling law for flux pinning in practical superconductors: I. Separability postulate, raw scaling data and parameterization at moderate strains, Supercond. Sci. Technol. 23, 083001 (2010).

    Article  Google Scholar 

  22. J. W. Ekin, N. Cheggour, L. Goodrich, J. Splett, B. Bordini, and D. Richter, Unified scaling law for flux pinning in practical superconductors: II. Parameter testing, scaling constants, and the extra-polative scaling expression, Supercond. Sci. Technol. 29, 123002 (2016).

    Article  Google Scholar 

  23. J. W. Ekin, N. Cheggour, L. Goodrich, and J. Splett, Unified Scaling Law for flux pinning in practical superconductors: III. Minimum datasets, core parameters, and application of the extrapolative scaling expression, Supercond. Sci. Technol. 30, 033005 (2017).

    Article  Google Scholar 

  24. D. P. Boso, M. Lefik, and B. A. Schrefler, Homogenisation methods for the thermo-mechanical analysis of Nb3Sn strand, Cryogenics 46, 569 (2006).

    Article  Google Scholar 

  25. J. Chen, K. Han, and P. N. Kalu, 3D stress-strain model of the Nb3Sn wire, IEEE Trans. Appl. Supercond. 21, 2509 (2011).

    Article  Google Scholar 

  26. E. Q. Sun, Multi-scale nonlinear stress analysis of Nb3Sn superconducting accelerator magnets, Supercond. Sci. Technol. 35, 045019 (2022).

    Article  Google Scholar 

  27. Y. Feng, H. Yong, and Y. Zhou, Efficient multiscale investigation of mechanical behavior in Nb3Sn superconducting accelerator magnet based on self-consistent clustering analysis, Compos. Struct. 324, 117541 (2023).

    Article  Google Scholar 

  28. K. Osamura, S. Machiya, Y. Tsuchiya, H. Suzuki, T. Shobu, M. Sato, T. Hemmi, Y. Nunoya, and S. Ochiai, Local strain and its influence on mechanical-electromagnetic properties of twisted and untwisted ITER Nb3Sn strands, Supercond. Sci. Technol. 25, 054010 (2012).

    Article  Google Scholar 

  29. M. Ahoranta, J. Lehtonen, and T. Tarhasaari, Modelling the effect of twisting on electro-mechanical properties of Nb3Sn conductors, Cryogenics 49, 694 (2009).

    Article  Google Scholar 

  30. Z. Jing, H. Yong, and Y. Zhou, Theoretical modeling for the effect of twisting on the properties of multifilamentary Nb3Sn superconducting strand, IEEE Trans. Appl. Supercond. 23, 6000307 (2013).

    Article  Google Scholar 

  31. B. Liu, Z. Jing, H. Yong, and Y. Zhou, Strain distributions in superconducting strands with twisted filaments, Compos. Struct. 174, 158 (2017).

    Article  Google Scholar 

  32. D. M. J. Taylor, S. A. Keys, and D. P. Hampshire, Reversible and irreversible effects of strain on the critical current density of a niobium-tin superconducting wire, Cryogenics 42, 109 (2002).

    Article  Google Scholar 

  33. L. F. Goodrich, N. Cheggour, X. F. Lu, J. D. Splett, T. C. Stauffer, and B. J. Filla, Method for determining the irreversible strain limit of Nb3Sn wires, Supercond. Sci. Technol. 24, 075022 (2011).

    Article  Google Scholar 

  34. N. Cheggour, T. C. Stauffer, W. Starch, P. J. Lee, J. D. Splett, L. F. Goodrich, and A. K. Ghosh, Precipitous change of the irreversible strain limit with heat-treatment temperature in Nb3Sn wires made by the restacked-rod process, Sci. Rep. 8, 13048 (2018).

    Article  Google Scholar 

  35. N. Cheggour, T. C. Stauffer, W. Starch, L. F. Goodrich, and J. D. Splett, Implications of the strain irreversibility cliff on the fabrication of particle-accelerator magnets made of restacked-rod-process Nb3Sn wires, Sci. Rep. 9, 5466 (2019).

    Article  Google Scholar 

  36. X. Wang, Y. Gao, and Y. Zhou, Electro-mechanical behaviors of composite superconducting strand with filament breakage, Physica C 529, 26 (2016).

    Article  Google Scholar 

  37. X. Wang, Y. Li, and Y. Gao, Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading, Cryogenics 73, 14 (2016).

    Article  Google Scholar 

  38. L. Jiang, X. Su, L. Shen, J. Zhou, and X. Zhang, Damage behavior of Nb3Sn/Cu superconducting strand at room temperature under asymmetric strain cycling, Fusion Eng. Des. 172, 112869 (2021).

    Article  Google Scholar 

  39. L. Jiang, X. Zhang, and Y. H. Zhou, Nonlinear static and dynamic mechanical behaviors of Nb3Sn superconducting composite wire: Experiment and analysis, Acta Mech. Sin. 39, 122322 (2023).

    Article  Google Scholar 

  40. T. Mura, Micromechanics of Defects in Solids (Springer Netherlands, Dordrecht, 1987).

    Book  Google Scholar 

  41. G. L. Shen, G. K. Hu, and B. Liu, Mechanics of Composite Materials (Tsinghua University Press, Beijing, 2013).

    Google Scholar 

  42. T. Mori, and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall. 21, 571 (1973).

    Article  Google Scholar 

  43. J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Royal Society, 241, 376 (1957).

    MathSciNet  Google Scholar 

  44. I. Doghri, Mechanics of Deformable Solids (Springer, Berlin, Heidelberg, 2000).

    Book  Google Scholar 

  45. I. Doghri, and A. Ouaar, Homogenization of two-phase elasto-plastic composite materials and structures, Int. J. Solids Struct. 40, 1681 (2003).

    Article  Google Scholar 

  46. J. Mazars, and G. Pijaudier-Cabot, Continuum damage theory—Application to concrete, J. Eng. Mech. 115, 345 (1989).

    Article  Google Scholar 

  47. S. Murakami, Continuum Damage Mechanics (Springer Netherlands, Dordrecht, 2012).

    Book  Google Scholar 

  48. W. L. Azoti, A. Tchalla, Y. Koutsawa, A. Makradi, G. Rauchs, S. Belouettar, and H. Zahrouni, Mean-field constitutive modeling of elasto-plastic composites using two (2) incremental formulations, Compos. Struct. 105, 256 (2013).

    Article  Google Scholar 

  49. A. Tchalla, W. L. Azoti, Y. Koutsawa, A. Makradi, S. Belouettar, and H. Zahrouni, Incremental mean-fields micromechanics scheme for non-linear response of ductile damaged composite materials, Compos. Part B-Eng. 69, 169 (2015).

    Article  Google Scholar 

  50. E. Barzi, G. Ambrosio, N. Andreev, R. Bossert, R. Carcagno, S. Feher, V. S. Kashikhin, V. V. Kashikhin, M. J. Lamm, F. Nobrega, I. Novitski, Y. Pishalnikov, C. Sylvester, M. Tartaglia, D. Turrioni, R. Yamada, A. V. Zlobin, M. Field, S. Hong, J. Parrell, and Y. Zhang, Performance of Nb3Sn RRP strands and cables based on a 108/127 stack design, IEEE Trans. Appl. Supercond. 17, 2718 (2007).

    Article  Google Scholar 

  51. N. Mitchell, Finite element simulations of elasto-plastic processes in Nb3Sn strands, Cryogenics 45, 501 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11602185, 11972271, and 12322208), the Young Elite Scientists Sponsorship Program by CAST (Grant No. 2020QNRC001), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Ze Jing designed the model and the computational framework of this study, made numerical simulations, and wrote and edited the manuscript. Yu Zhang collected experimental data and aided in preparing the figures and tables.

Corresponding author

Correspondence to Ze Jing  (景泽).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Z., Zhang, Y. Micromechanical modelling on the elastoplastic damage and irreversible critical current degradation of the twisted multi-filamentary Nb3Sn superconducting strand. Acta Mech. Sin. 40, 723661 (2024). https://doi.org/10.1007/s10409-024-23611-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-024-23611-x

Navigation