Skip to main content
Log in

The Aharonov–Bohm effect in a closed flux line

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Aharonov–Bohm (AB) effect was convincingly demonstrated using a micro-sized toroidal magnet but it is almost always explained using an infinitely-long solenoid or an infinitely-long flux line. The main reason for this is that the formal treatment of the AB effect considering a toroidal configuration turns out to be too cumbersome. But if the micro-sized toroidal magnet is modelled by a closed flux line of arbitrary shape and size then the formal treatment of the AB effect is exact, considerably simplified, and well-justified. Here we present such a treatment that covers in detail the electromagnetic, topological, and quantum-mechanical aspects of this effect. We demonstrate that the AB phase in a closed flux line is determined by a linking number and has the same form as the AB phase in an infinitely-long flux line which is determined by a winding number. We explicitly show that the two-slit interference shift associated with the AB effect in a closed flux line is the same as that associated with an infinitely-long flux line. We emphasise the topological nature of the AB phase in a closed flux line by demonstrating that this phase is invariant under deformations of the charge path, deformations of the closed flux line, simultaneous deformations of the charge path and the closed flux line, and the interchange between the charge path and the closed flux line. We also discuss the local and nonlocal interpretations of the AB effect in a closed flux line and introduce a non-singular gauge in which the vector potential vanishes in all space except on the surface surrounded by the closed flux line, implying that this vector potential is zero along the trajectory of the charged particle except on the crossing point where this trajectory intersects the surface bounded by the closed flux line, a result that questions the alleged physical significance of the vector potential and thereby the local interpretation of the AB effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

No data sets were generated or analysed in this paper.

References

  1. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D. Rohrlich, Y. Aharonov, Quantum Paradoxes: Quantum Theory for the Perplexed (Wiley-VCH, Weinheim, 2005)

    MATH  Google Scholar 

  3. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. 2 (Addison-Wesley, Reading, 1964)

    MATH  Google Scholar 

  4. E. Cohen et al., Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019)

    Article  Google Scholar 

  5. R.G. Chambers, Shift of an electron interference pattern by enclosed magnetic flux. Phys. Rev. Lett. 5, 3–5 (1960)

    Article  ADS  Google Scholar 

  6. H.A. Fowler et al., Electron interferometer studies of iron whiskers. J. Appl. Phys. 32, 1153–1155 (1961)

    Article  ADS  Google Scholar 

  7. H. Boersch, H. Hamisch, K. Grohmann, Experimenteller Nachweis der Phasenverschiebung von Elektronenwellen durch das magnetische Vektorpotential. II. Z. Phys. 169, 263–272 (1962)

    Article  ADS  Google Scholar 

  8. G. Möllenstedt, W. Bayh, Messung der kontinuierlichen Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische vektorpotential einer Luftspule. Naturwissenschaften 49, 81–82 (1962)

    Article  ADS  Google Scholar 

  9. M. Peshkin, A. Tonomura, The Aharonov-Bohm Effect (Springer, Berlin, 1989)

    Book  Google Scholar 

  10. A. Tonomura, The AB effect and its expanding applications. J. Phys. A Math. Theor. 43, 354021 (2010)

    Article  Google Scholar 

  11. A. Tonomura et al., Observation of Aharonov-Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443–1446 (1982)

    Article  ADS  Google Scholar 

  12. A. Tonomura et al., Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792–795 (1986)

    Article  ADS  Google Scholar 

  13. N. Osakabe et al., Experimental confirmation of Aharonov-Bohm effect using a toroidal magnetic field confined by a superconductor. Phys. Rev. A 34, 815–822 (1986)

    Article  ADS  Google Scholar 

  14. V.L. Lyuboshitz, Ya. A. Smorodinskii, Aharonov-Bohm effect in a toroidal solenoid. Zh. Eksp. Teor. Fiz. 75, 40–45 (1978) [Sov. Phys. JETP 48, 19–24 (1978)]

  15. V.V. Lyuboshitz, V.L. Lyuboshitz, Momentum-transfer scattering cross section and the Aharonov-Bohm effect on a toroidal solenoid. Zh. Eksp. Teor. Fiz. 118, 777–786 (2000) [Sov. Phys. 91, 673–681 (2000)]

  16. N.A. Nemkov, A.A. Basharin, V.A. Fedotov, Nonradiating sources, dynamic anapole, and Aharonov-Bohm effect. Phys. Rev. B 95, 165134 (2017)

    Article  ADS  Google Scholar 

  17. G.N. Afanasiev, Topological Effects in Quantum Mechanics (Springer, Netherlands, 1999)

    Book  MATH  Google Scholar 

  18. G.N. Afanasiev, Closed analytical expressions for some useful sums and integrals involving Legendre functions. J. Comput. Phys. 69, 196–208 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. G.N. Afanasiev, D.M. Dubovik, Electromagnetic properties of a toroidal solenoid. J. Phys. A Math. Gen. 25, 4869–4886 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  20. N.J. Carron, On the fields of a torus and the role of the vector potential. Am. J. Phys. 63, 717–729 (1995)

    Article  ADS  Google Scholar 

  21. F.W. Wiegel, Path integrals with topological constraints: Aharonov-Bohm effect and polymer entanglements. Physica A 109, 609–617 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Maeda, K. Shizuya, The Aharonov-Bohm and Aharonov-Casher effects and electromagnetic angular momentum. Zeitschrift für Physik C 60, 265–270 (1993)

    Article  ADS  Google Scholar 

  23. H.J. Rothe, Comments on the theory of the Aharonov-Bohm effect. Nuov. Cim. A 62, 54–67 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation (World Scientific, Singapore, 2008)

    Book  MATH  Google Scholar 

  25. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (World Scientific, Singapore, 2009)

    Book  MATH  Google Scholar 

  26. R. DeWit, Theory of disclinations: II. Continous and discrete disclinations in anisotropic elasticity. J. Res. Nat. Bur. Stand. (USA) 77A, 49–100 (1973)

    Article  Google Scholar 

  27. I.A. Kunin, Fields of randomly distributed dislocations and force dipoles in an infinite elastic anisotropic medium. J. Appl. Mech. Tech. Phys. 6, 49–53 (1965)

    Article  ADS  Google Scholar 

  28. A. Zangwill, Modern Electrodynamics (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  29. J. Schwinger, L.L. De Raad, Jr., K. A. Milton, and W. Y. Tsai, Classical Electrodynamics (Perseus, Reading, 1998)

  30. L. Eyges, The Classical Electromagnetic Field (Addison-Wesley, Reading, 1972)

    Google Scholar 

  31. J. Djurić, Double layers and solid angle in potential theory. Am. J. Phys. 35, 411–415 (1967)

    Article  ADS  Google Scholar 

  32. H. Kleinert, Double-gauge invariance and local quantum field theory of charges and Dirac magnetic monopoles. Phys. Lett. B 246, 127–130 (1990)

    Article  ADS  Google Scholar 

  33. H. Kleinert, The extra Gauge symmetry of string deformations in electromagnetism with charges and Dirac monopoles. Int. J. Mod. Phys. A 7, 4693–4705 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. P.A.M. Dirac, Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A. 133, 60–72 (1931)

    Article  ADS  MATH  Google Scholar 

  35. R. Heras, Dirac quantisation condition: a comprehensive review. Contemp. Phys. 59, 331–355 (2018)

    Article  ADS  Google Scholar 

  36. Y.M. Shnir, Magnetic Monopoles (Springer, Berlin, 2005)

    Book  MATH  Google Scholar 

  37. R.L. Ricca, B. Nipoti, Gauss’ linking number revisited. J. Knot Theory Ramifications 20, 1325–1343 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.A. Heras, R. Heras, Can classical electrodynamics predict nonlocal effects? Eur. Phys. J. Plus 136, 847 (2021)

    Article  Google Scholar 

  39. J.A. Heras, R. Heras, Topology, nonlocality and duality in classical electrodynamics. Eur. Phys. J. Plus 137, 157 (2022)

    Article  Google Scholar 

  40. D.H. Kobe, Aharonov-Bohm effect revisited. Ann. Phys. 123, 381–410 (1979)

    Article  ADS  Google Scholar 

  41. R. Gelca, Theta Functions and Knots (World Scientific, Singapore, 2014)

    Book  MATH  Google Scholar 

  42. T. O. Eynck, H. Lyre, N. V. Rummell, A versus B! Topological nonseparability and the Aharonov-Bohm effect, E-print PITT-PHIL-SCI00000404 (2001)

  43. Y. Aharonov, E. Cohen, D. Rohrlich, Nonlocality of the Aharonov-Bohm effect. Phys. Rev. A 93, 042110 (2016)

    Article  ADS  Google Scholar 

  44. E. Shech, Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov-Bohm effect. Synthese 195, 4839–4863 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Pearle, Feynman’s lecture utilizing the Aharonov-Bohm effect. Quantum Stud. Math. Found. 5, 391–398 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Maudlin, Ontological clarity via canonical presentation: electromagnetism and the Aharonov-Bohm effect. Entropy 20, 465 (2018)

    Article  ADS  Google Scholar 

  47. S.C. Tiwari, Physical reality of electromagnetic potentials and the classical limit of the Aharonov-Bohm effect. Quant. Stud. Math. Found. 5, 279–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Wakamatsu et al., The role of electron orbital angular momentum in the Aharonov-Bohm effect revisited. Ann. Phys. 38, 259–277 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. J. Earman, The role of idealizations in the Aharonov-Bohm effect. Synthese 196, 1991–2019 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Dougherty, The non-ideal theory of the Aharonov-Bohm effect. Synthese 198, 12195–12221 (2021)

    Article  MathSciNet  Google Scholar 

  51. V. Ardourel, A. Guay, Why is the transference theory of causation insufficient? The challenge of the Aharonov-Bohm effect. Stud. Hist. Philos. Sci. B 63, 12–23 (2018)

    MathSciNet  MATH  Google Scholar 

  52. R.A. Mulder, Gauge-underdetermination and shades of locality in the Aharonov-Bohm effect. Found. Phys. 51, 48 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. L. Vaidman, Role of potentials in the Aharonov-Bohm effect. Phys. Rev. A 86, 040101 (2012)

    Article  ADS  Google Scholar 

  54. Y. Aharonov, E. Cohen, D. Rohrlich, Comment on “role of potentials in the Aharonov-Bohm effect’’. Phys. Rev. A 92, 026101 (2015)

    Article  ADS  Google Scholar 

  55. L. Vaidman, Reply to “Comment on ‘role of potentials in the Aharonov-Bohm effect’’. Phys. Rev. A 92, 026102 (2015)

    Article  ADS  Google Scholar 

  56. M. Bunge, Does the Aharonov-Bohm effect occur? Found. Sci. 20, 129–133 (2015)

    Article  Google Scholar 

  57. R.F. Wang, A possible interplay between electron beams and magnetic fluxes in the Aharonov-Bohm effect. Front. Phys. 10, 358–363 (2015)

    Article  ADS  Google Scholar 

  58. K. Kicheon, Locality of the Aharonov-Bohm-Casher effect. Phys. Rev. A 91, 052116 (2016)

    Google Scholar 

  59. P. Pearle, A. Rizzi, Quantum-mechanical inclusion of the source in the Aharonov-Bohm effects. Phys. Rev. A 95, 052123 (2017)

    Article  ADS  Google Scholar 

  60. P. Pearle, A. Rizzi, Quantized vector potential and alternative views of the magnetic Aharonov-Bohm phase shift. Phys. Rev. A 95, 052124 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  61. B. Li, D.W. Hewak, Q.J. Wang, The transition from quantum field theory to one-particle quantum mechanics and a proposed interpretation of Aharonov-Bohm effect. Found. Phys. 48, 837–852 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. M. El Atiki, M. Bendahane, A. Kassou-Ou-Ali, Aharonov-Bohm effect in the ghost interference. Pramana J. Phys. 91, 76 (2018)

    Article  ADS  MATH  Google Scholar 

  63. M. Becker et al., Asymmetry and non-dispersivity in the Aharonov-Bohm effect. Nat. Commun. 10, 1700 (2019)

    Article  ADS  Google Scholar 

  64. K.J. Kasunic, Magnetic Aharonov-Bohm effects and the quantum phase shift: a heuristic interpretation. Am. J. Phys. 87, 745–751 (2019)

    Article  ADS  Google Scholar 

  65. D.A. Slavnov, The Aharonov-Bohm Effect: an algebraic approach. Phys. Part. Nucl. 50, 77–86 (2019)

    Article  Google Scholar 

  66. J. Bernabeu, J. Navarro-Salas, A non-local action for electrodynamics: duality symmetry and the Aharonov-Bohm effect. Revisited. Symmetry 11, 1191 (2019)

    Article  Google Scholar 

  67. C. Marletto, V. Vedral, Aharonov-Bohm phase is locally generated like all other quantum phases. Phys. Rev. Lett. 125, 040401 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  68. G. Hetzroni, Relativity and equivalence in Hilbert space: a principle-theory approach to the Aharonov-Bohm effect. Found. Phys. 50, 120–135 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. C.R. de Oliveira, R.G. Romano, A new version of the Aharonov-Bohm effect. Found. Phys. 50, 137–146 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. K. Bhattacharya, Demystifying the nonlocality problem in Aharonov-Bohm effect. Phys. Scr. 96, 084011 (2021)

    Article  ADS  Google Scholar 

  71. P.L. Saldanha, Local description of the Aharonov-Bohm effect with a quantum electromagnetic field. Found. Phys. 51, 6 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. M.I. Wanas, M.M. Kamal, Z.A. Ismail, A pure geometric approach to the Aharonov-Bohm effect. Indian J. Phys. 95, 2865–2871 (2021)

    Article  ADS  Google Scholar 

  73. G. Spavieri et al., Effective interaction force between an electric charge and a magnetic dipole and locality (or nonlocality) in quantum effects of the Aharonov-Bohm type. Chin. Phys. Lett. 38, 034101 (2021)

    Article  ADS  Google Scholar 

  74. P.L. Saldanha, Aharonov-Casher and shielded Aharonov-Bohm effects with a quantum electromagnetic field. Phys. Rev. A 104, 032219 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  75. V. Vedral, A Classical (Local) Account of The Aharonov-Bohm Effect (2021). arXiv:2111.00476

  76. K. J. Kasunic, Shear of the vector potential in the Aharonov-Bohm effect (2021). arXiv:2112.10611

  77. Y. Aharonov, Non-local phenomena and the Aharonov-Bohm effect, Proc. Int. Symp. Foundations of Quantum Mechanics, Tokyo, 10–19 (1983). Reproduced in Foundations of Quantum Mechanics in the Light of New Technology, 8–17, World Scientific (1997)

  78. Y. Aharonov et al., Classical analog to topological nonlocal quantum interference effects. Phys. Rev. Lett. 92, 020401 (2004)

    Article  ADS  Google Scholar 

  79. H. Batelaan, A. Tonomura, The Aharonov-Bohm effects: variations on a subtle theme. Phys. Today 62, 38–43 (2009)

    Article  Google Scholar 

  80. A. Caprez, B. Barwick, H. Batelaan, Macroscopic test of the Aharonov-Bohm effect. Phys. Rev. Lett. 99, 210401 (2007)

    Article  ADS  Google Scholar 

  81. M. Becker, H. Batelaan, Experimental test for approximately dispersionless forces in the Aharonov-Bohm effect. Europhys. Lett. 115, 10011 (2016)

    Article  ADS  Google Scholar 

  82. D. Dragoman, M. Dragoman, Quantum Classical Analogies (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  83. G. Rizzi, M.L. Ruggiero, The Sagnac phase shift suggested by the Aharonov-Bohm effect for relativistic matter beams. Gen. Rel. Grav. 35, 1745–1760 (2003)

    Article  ADS  MATH  Google Scholar 

  84. C.-H. Tsai, D. Neilson, New quantum interference effect in rotating systems. Phys. Rev. A. 37, 619–621 (1988)

    Article  ADS  Google Scholar 

  85. M.V. Berry et al., Wavefront dislocations in the Aharonov-Bohm effect and its water wave analogue. Eur. J. Phys. 1, 154–162 (1980)

    Article  MathSciNet  Google Scholar 

  86. M.V. Berry, The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. J.H. Hannay, Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian. J. Phys. A 18, 221–230 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  88. N. Satapathy et al., Classical light analogue of the non-local Aharonov-Bohm effect. Europhys. Lett. 97, 50011 (2012)

    Article  ADS  Google Scholar 

  89. H. Davidowitz, V. Steinberg, On an analog of the Aharonov-Bohm effect in superfluid helium. Europhys. Lett. 38, 297–300 (1997)

    Article  ADS  Google Scholar 

  90. G. Rousseaux, R. Kofman, O. Minazzoli, The Maxwell-Lodge effect: significance of electromagnetic potentials in the classical theory. Eur. Phys. J. D 49, 249–256 (2008)

    Article  ADS  Google Scholar 

  91. I.L. Paiva, R. Lenny, E. Cohen, Geometric phases and the Sagnac effect: Foundational aspects and sensing applications. Adv. Quantum Technol. 2100121 (2022)

  92. P. Bocchieri, A. Loinger, Nonexistence of the Aharonov-Bohm effect. Nuov. Cim. A 47, 475–482 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  93. E.G.P. Rowe, Consequences of a singular gauge transformation. Nuov. Cim. A 56, 16–20 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  94. A. Zeilinger, On the Aharonov-Bohm effect. Lett. Nuov. Cim. 25, 333–336 (1979)

    Article  Google Scholar 

  95. M. Bawin, A. Burnel, Further comments on the Aharonov-Bohm effect. Lett. Nuov. Cim. 27, 4–6 (1980)

    Article  Google Scholar 

  96. J.A. Mignaco, C.A. Novaes, Remarks on the possibility of nonexistence of the Aharonov-Bohm effect (ESAB effect). Lett. Nuov. Cim. 26, 453–456 (1979)

    Article  Google Scholar 

  97. F. Wilczek, Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48, 1144–1146 (1982)

    Article  ADS  Google Scholar 

  98. D.H. Kobe, Comment on “Magnetic flux, angular momentum, and statistics,’’. Phys. Rev. Lett. 49, 1592 (1982)

    Article  ADS  Google Scholar 

  99. Y. Nambu, The Aharonov-Bohm problem revisited. Nucl. Phys. B 579, 590–616 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. T. Chakraborty, Nanoscopic Quantum Rings: A New Perspective. In: Kramer B. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 43 (Springer, Berlin, 2003)

  101. R. Heras, The Helmholtz theorem and retarded fields. Eur. J. Phys. 37, 065204 (2016)

    Article  MATH  Google Scholar 

  102. S. Coleman, The Magnetic Monopole Fifty Years Later, in The Unity of the Fundamental Interactions, 21–117 (Springer, Boston, 1983)

    Google Scholar 

  103. R. A. Millikan, Nobel prize lecture 1923. May 23 (1924)

  104. G.N. Afanasiev, The scattering of charged particles on the toroidal solenoid. J. Phys. A 21, 2095–2110 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  105. G.N. Afanasiev, Theoretical description of Tonomura-like experiments (electron scattering on a toroidal solenoid). Phys. Lett. A 142, 222–226 (1989)

    Article  ADS  Google Scholar 

  106. M. Qian, Z. Gu, C. Miao, Aharonov-Bohm scattering on thin toroidal magnetic flux without toroidal shielding. Commun. Theor. Phys. 34, 135–142 (2000)

    Article  ADS  Google Scholar 

  107. J. Hamilton, Aharonov-Bohm and other Cyclic Phenomena, Springer Tracts in Modern Physics, vol. 139 (Springer, Berlin, 1997)

    Google Scholar 

  108. M. Ballesteros, R. Weder, High-velocity estimates for the scattering operator and Aharonov-Bohm effect in three dimensions. Commun. Math. Phys. 285, 345–398 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. M. Ballesteros, R. Weder, The Aharonov-Bohm effect and Tonomura et al. experiments: rigorous results. J. Math. Phys. 50, 122108 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  110. P. Roux, Scattering by a toroidal coil. J. Phys. A 36, 5293–5304 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. G.N. Afanasiev, V.M. Shilov, Numerical investigation of Tonomura experiments. J. Phys. A 26, 743–750 (1993)

    Article  ADS  Google Scholar 

  112. S. Weinberg, Lectures on Quantum Mechanics (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  113. J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Reading, 1994)

    Google Scholar 

  114. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. F. Wilczek, Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  116. X.G. Wen, E. Dagotto, E. Fradkin, Anyons on a torus. Phys. Rev. B 42, 6110–6123 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. R. Iengo, K. Lechner, Quantum mechanics of anyons on a torus. Nucl. Phys. B 346, 551–575 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  118. G.N. Afanasiev, Quantum mechanics of toroidal anyons. J. Phys. A Math. Gen. 24, 2517–2528 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  119. Y. Hatsugai, M. Kohmoto, Y.-S. Wu, Anyons on a torus: Braid group, Aharonov-Bohm period, and numerical study. Phys. Rev. B 43, 10761–10768 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank my father José A. Heras for the insightful and often enjoyable discussions we had about the AB effect. Perhaps the most entertaining part of our conversations was trying to understand why nonlocality seems to be such an unthinkable concept for many physicists. As an undergraduate student, I wrote this paper in my free time and with the interest of understanding the AB effect without any kind of prejudice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Heras.

Appendices

Appendix A. Derivation of Eq. (4)

Consider the potential of the closed flux line defined in Eq. (7)

$$\begin{aligned} {\varvec{A}}=\frac{\varPhi }{4\pi } \nabla \times \oint _{\mathcal {C}} \frac{d {\varvec{x}}'}{|{\varvec{x}} - {\varvec{x}}'|}. \end{aligned}$$
(A1)

The curl of this potential and the use of the identity \(\nabla \times (\nabla \times {\varvec{F}}) = \nabla (\nabla \cdot {\varvec{F}})- \nabla ^2 {\varvec{F}}\) yield

$$\begin{aligned} \nabla \times {\varvec{A}}= & {} \frac{\varPhi }{4\pi }\nabla \times \bigg [\nabla \times \bigg ( \oint _{\mathcal {C}} \frac{d{\varvec{x}}'}{|{\varvec{x}}-{\varvec{x}}'|} \bigg )\bigg ]\nonumber \\= & {} \frac{\varPhi }{4\pi } \bigg [\nabla \oint _{\mathcal {C}} \nabla \cdot \bigg ( \frac{d{\varvec{x}}'}{|{\varvec{x}}-{\varvec{x}}'|} \bigg ) -\oint _{\mathcal {C}}\nabla ^2 \bigg (\frac{ d{\varvec{x}}'}{|{\varvec{x}}-{\varvec{x}}'|} \bigg )\bigg ]. \end{aligned}$$
(A2)

Inserting \(\nabla \cdot (d {\varvec{x}}'/|{\varvec{x}}-{\varvec{x}}'|) = -\nabla '(1/|{\varvec{x}}\!-\!{\varvec{x}}'|) \cdot d{\varvec{x}}'\) and \(\nabla ^2( 1 / |{\varvec{x}}-{\varvec{x}}'|)=-4 \pi \delta ({\varvec{x}} - {\varvec{x}}')\) in Eq. (A2), we obtain

$$\begin{aligned} \nabla \times {\varvec{A}}= \frac{\varPhi }{4\pi } \bigg [-\nabla \oint _{\mathcal {C}} \nabla ' \bigg ( \frac{1}{|{\varvec{x}}-{\varvec{x}}'|} \bigg )\cdot d{\varvec{x}}' +4\pi \oint _{\mathcal {C}}\delta ({\varvec{x}}- {\varvec{x}}')\,d{\varvec{x}}'\bigg ]. \end{aligned}$$
(A3)

The first term on the right-hand side vanishes because \(\oint _{\mathcal {C}}\nabla '(1/|{\varvec{x}}- {\varvec{x}}'|)\cdot d {\varvec{x}}'=0\) on account of the gradient theorem and the fact that \(1/|{\varvec{x}}- {\varvec{x}}'|\) is a single-valued function of \({\varvec{x}}'\). Thus, Eq. (A3) becomes

$$\begin{aligned} \nabla \times {\varvec{A}}= \varPhi \oint _{\mathcal {C}}\delta ({\varvec{x}}- {\varvec{x}}')\,d{\varvec{x}}'={\varvec{B}}, \end{aligned}$$
(A4)

which shows that the curl of Eq. (7) yields the magnetic field given in Eq. (4).

Appendix B. Derivation of Eq. (8)

Consider the potential of the closed flux line defined in Eq. (7)

$$\begin{aligned} {\varvec{A}}=\frac{\varPhi }{4\pi } \nabla \times \oint _{\mathcal {C}} \frac{d {\varvec{x}}'}{|{\varvec{x}} - {\varvec{x}}'|}. \end{aligned}$$
(B1)

Using the Stokes theorem in the closed line integral of this potential we obtain

$$\begin{aligned} \oint _{\mathcal {C}}\frac{d {\varvec{x}}'}{|{\varvec{x}}- {\varvec{x}}'|}= \int _{\mathcal {S}}d{\varvec{S}}'\times \nabla '\bigg ( \frac{1}{|{\varvec{x}}- {\varvec{x}}'|} \bigg ), \end{aligned}$$
(B2)

where \(\mathcal {S}\) is the surface enclosed by the curve \(\mathcal {C}.\) Making use of the relations \(\nabla \times (d {\varvec{S}}'/|{\varvec{x}}- {\varvec{x}}'|)= -d {\varvec{S}}' \times \nabla (1/|{\varvec{x}}-{\varvec{x}}'|)\) and \(\nabla (1/|{\varvec{x}}- {\varvec{x}}'|)=-\nabla '(1/|{\varvec{x}}- {\varvec{x}}'|)\) in Eq. (B2), we obtain

$$\begin{aligned} \oint _{\mathcal {C}}\frac{d {\varvec{x}}'}{|{\varvec{x}}- {\varvec{x}}'|}= \nabla \times \int _{\mathcal {S}}\frac{d{\varvec{S}}'}{|{\varvec{x}}- {\varvec{x}}'|}, \end{aligned}$$
(B3)

which allows us to write Eq. (B1) as

$$\begin{aligned} {\varvec{A}}= \frac{\varPhi }{4\pi }\bigg [ \nabla \times \bigg (\nabla \times \int _{\mathcal {S}}\frac{d{\varvec{S}}'}{|{\varvec{x}}- {\varvec{x}}'|}\bigg )\bigg ]. \end{aligned}$$
(B4)

The use of the identity \(\nabla ^2{\varvec{F}} = \nabla (\nabla \cdot {\varvec{F}})-\nabla \times (\nabla \times {\varvec{F}})\) in Eq. (B4) gives

$$\begin{aligned} {\varvec{A}}=\frac{\varPhi }{4\pi }\bigg [ \nabla \int _{\mathcal {S}}\nabla \cdot \bigg (\frac{d{\varvec{S}}'}{|{\varvec{x}}- {\varvec{x}}'|}\bigg )- \int _{\mathcal {S}}\nabla ^2\bigg (\frac{d{\varvec{S}}'}{|{\varvec{x}}- {\varvec{x}}'|}\bigg )\bigg ]. \end{aligned}$$
(B5)

Considering the results \(\nabla \cdot (d {\varvec{S}}'/|{\varvec{x}}- {\varvec{x}}'|)=\nabla (1/|{\varvec{x}}- {\varvec{x}}'|)\cdot d {\varvec{S}}'\) and \(\nabla (1/|{\varvec{x}}- {\varvec{x}}'|)=-\nabla '(1/|{\varvec{x}}- {\varvec{x}}'|)\) in Eq. (B5), it becomes

$$\begin{aligned} {\varvec{A}}= \frac{\varPhi }{4\pi }\bigg [ -\nabla \int _{\mathcal {S}}\nabla '\bigg (\frac{1}{|{\varvec{x}}- {\varvec{x}}'|}\bigg ) \cdot d{\varvec{S}}'- \int _{\mathcal {S}}\nabla ^2\bigg (\frac{d{\varvec{S}}'}{|{\varvec{x}}- {\varvec{x}}'|}\bigg )\bigg ]. \end{aligned}$$
(B6)

Using \(\nabla '(1/|{\varvec{x}}- {\varvec{x}}'|)=({\varvec{x}}- {\varvec{x}}')/|{\varvec{x}}- {\varvec{x}}'|^3\) and \(\nabla ^2(1/|{\varvec{x}}- {\varvec{x}}'|)=-4\pi \delta ({\varvec{x}}- {\varvec{x}}')\) in Eq. (B6), we obtain

$$\begin{aligned} {\varvec{A}}=\frac{\varPhi }{4\pi }\bigg [\nabla \int _{\mathcal {S}}\frac{({\varvec{x}}'-{\varvec{x}})\cdot d{\varvec{S}}'}{|{\varvec{x}}- {\varvec{x}}'|^3} + 4\pi \int _{\mathcal {S}}\delta ({\varvec{x}}-{\varvec{x}}')\,d{\varvec{S}}'\bigg ]. \end{aligned}$$
(B7)

The first integral is identified with the single-valued solid angle \(\varOmega _0\) defined in Eq. (9) while the second integral is identified with the surface vector Dirac delta \({\varvec{\delta }}_{\mathcal {S}}\) specified in Eq. (10). Thus, we get Eq. (8): \({\varvec{A}} = \varPhi \nabla \varOmega _0/(4\pi ) + \varPhi {\varvec{\delta }}_{\mathcal {S}}.\)

Appendix C. Proof of Eq. (11)

The proof of Eq. (11) will be developed in two parts. In the first part we will explicitly demonstrate that the circulation of the gradient of \(\varOmega _0\) along an arbitrary closed path C vanishes \(\oint _{C}\nabla \varOmega _0\cdot d {\varvec{x}}=0\). In the second part we will transform this circulation using the Stokes theorem \(\oint _{C}\nabla \varOmega _0\cdot d {\varvec{x}}=0=\int _{S}\nabla \times \nabla \varOmega _0 \cdot d {\varvec{S}}\) to show \(\nabla \times \nabla \varOmega _0=0\). This last result will be used to demonstrate Eq. (11).

Let us obtain a suitable form of the gradient of \(\varOmega _0\). The gradient of Eq. (9) gives

$$\begin{aligned} \nabla \varOmega _0 = \nabla \int _{\mathcal {S}}\frac{({\varvec{x}}' -{\varvec{x}})\cdot d {\varvec{S}}'}{|{\varvec{x}}- {\varvec{x}}'|^3}. \end{aligned}$$
(C1)

Using \(\nabla (1/|{\varvec{x}}- {\varvec{x}}'|)= -({\varvec{x}}- {\varvec{x}}')/|{\varvec{x}}- {\varvec{x}}'|^3\), Eq. (C1) becomes

$$\begin{aligned} \nabla \varOmega _0 = -\nabla \int _{\mathcal {S}}\nabla '\bigg (\frac{1}{|{\varvec{x}}- {\varvec{x}}'|}\bigg )\cdot d {\varvec{S}}'. \end{aligned}$$
(C2)

Considering the relations \(\nabla '(1/|{\varvec{x}}- {\varvec{x}}'|)=-\nabla (1/|{\varvec{x}}- {\varvec{x}}'|)\) and \(\nabla (1/|{\varvec{x}}- {\varvec{x}}'|)\cdot d {\varvec{S}}'=\nabla \cdot (d {\varvec{S}}'/|{\varvec{x}}- {\varvec{x}}'|)\) in Eq. (C2), we obtain

$$\begin{aligned} \nabla \varOmega _0 = \nabla \int _{\mathcal {S}}\nabla \cdot \bigg (\frac{d {\varvec{S}}'}{|{\varvec{x}}- {\varvec{x}}'|}\bigg ). \end{aligned}$$
(C3)

When the identity \(\nabla (\nabla \cdot {\varvec{F}}) = \nabla \times (\nabla \times {\varvec{F}}) + \nabla ^2{\varvec{F}}\) is used in Eq. (C3), it becomes

$$\begin{aligned} \nabla \varOmega _0 = \nabla \times \bigg [ \nabla \times \int _{\mathcal {S}}\frac{d {\varvec{S}}'}{|{\varvec{x}}- {\varvec{x}}'|}\bigg ] + \nabla ^2 \int _{\mathcal {S}}\frac{d {\varvec{S}}'}{|{\varvec{x}}- {\varvec{x}}'|}. \end{aligned}$$
(C4)

Inserting \(\nabla \times (d {\varvec{S}}'/|{\varvec{x}}- {\varvec{x}}'|)= -d {\varvec{S}}' \times \nabla (1/|{\varvec{x}}-{\varvec{x}}'|)\) together with \(\nabla (1/|{\varvec{x}}- {\varvec{x}}'|)=-\nabla '(1/|{\varvec{x}}- {\varvec{x}}'|)\) in the quantity within the brackets and using \(\nabla ^2(1/|{\varvec{x}}- {\varvec{x}}'|)=-4\pi \delta ({\varvec{x}}- {\varvec{x}}')\) on the second term of Eq. (C4), we obtain

$$\begin{aligned} \nabla \varOmega _0 = \nabla \times \bigg [ \int _{\mathcal {S}}d {\varvec{S}}' \times \nabla '\bigg (\frac{1}{|{\varvec{x}}- {\varvec{x}}'|} \bigg )\bigg ] -4\pi \int _{\mathcal {S}}\delta ({\varvec{x}}- {\varvec{x}}')\,d{\varvec{S}}'. \end{aligned}$$
(C5)

The quantity within the brackets in Eq. (C5) can be transformed into a closed line integral via the Stokes theorem

$$\begin{aligned} \int _{\mathcal {S}}d {\varvec{S}}' \times \nabla '\bigg (\frac{1}{|{\varvec{x}}- {\varvec{x}}'|} \bigg )= \oint _{\mathcal {C}}\frac{d {\varvec{x}}'}{|{\varvec{x}}- {\varvec{x}}'|}, \end{aligned}$$
(C6)

where \(\mathcal {C}\) is the boundary of \(\mathcal {S}.\) When Eq. (C6) and the surface vector Dirac delta \(\int _{\mathcal {S}}\delta ({\varvec{x}}- {\varvec{x}}')d{\varvec{S}}'={\varvec{\delta }}_{\mathcal {S}}\) given in Eq. (10) are used in Eq. (C5), it takes the form

$$\begin{aligned} \nabla \varOmega _0 = \nabla \times \oint _{\mathcal {C}}\frac{d {\varvec{x}}'}{|{\varvec{x}}- {\varvec{x}}'|} -4\pi {\varvec{\delta }}_{\mathcal {S}}. \end{aligned}$$
(C7)

Considering \(\nabla \times (d {\varvec{x}}'/|{\varvec{x}} - {\varvec{x}}'|)= \nabla (1/|{\varvec{x}}- {\varvec{x}}'|)\times d {\varvec{x}}'\) and \(\nabla (1/|{\varvec{x}}- {\varvec{x}}'|)=({\varvec{x}}'- {\varvec{x}})/|{\varvec{x}}- {\varvec{x}}'|^3\) we can write Eq. (C7) as

$$\begin{aligned} \nabla \varOmega _0 = \oint _{\mathcal {C}}\frac{({\varvec{x}}' - {\varvec{x}})\times d {\varvec{x}}'}{|{\varvec{x}}- {\varvec{x}}'|^3} -4\pi {\varvec{\delta }}_{\mathcal {S}}, \end{aligned}$$
(C8)

which is a suitable form of the gradient of \(\varOmega _0\). Let us now take the circulation to Eq. (C8) along an arbitrary closed path C

$$\begin{aligned} \oint _{C}\nabla \varOmega _0\cdot d {\varvec{x}} = \oint _{C}\oint _{\mathcal {C}}\frac{[({\varvec{x}}' - {\varvec{x}})\times d {\varvec{x}}']\cdot d {\varvec{x}}}{|{\varvec{x}}- {\varvec{x}}'|^3} -4\pi \oint _{C}{\varvec{\delta }}_{\mathcal {S}}\cdot d {\varvec{x}}. \end{aligned}$$
(C9)

Making use of the relation \([({\varvec{x}}' - {\varvec{x}})\times d {\varvec{x}}']\cdot d {\varvec{x}}=({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')\) in the first term of the right-hand side of Eq. (C9), we obtain

$$\begin{aligned} \oint _{C}\nabla \varOmega _0\cdot d {\varvec{x}} =4\pi \bigg [\frac{1}{4\pi }\oint _{C}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}\bigg ] -4\pi \bigg [\oint _{C}{\varvec{\delta }}_{\mathcal {S}}\cdot d {\varvec{x}}\bigg ]. \end{aligned}$$
(C10)

The first quantity within the brackets is the linking number l defined by Eq. (21). The second quantity within the brackets is another equivalent form of the linking number defined by Eq. (27). Since C corresponds to the same path in the two closed line integrals on the right-hand side of Eq. (C10) then it follows that

$$\begin{aligned} \oint _{C}\nabla \varOmega _0 \cdot d{\varvec{x}}= {\left\{ \begin{array}{ll} 4\pi l - 4\pi l =0&{} \hbox {if} \,C \,\hbox {encloses} \,\mathcal {C} \\ 0 &{}\text {otherwise} \end{array}\right. } \end{aligned}$$
(C11)

We observe that regardless of the path C we have the vanishing of the circulation

$$\begin{aligned} \oint _{C}\nabla \varOmega _0 \cdot d{\varvec{x}}=0, \end{aligned}$$
(C12)

which is the first step in the proof of Eq. (11). In the second step we transform the left-hand side of Eq. (C12) into a surface integral via the Stokes theorem

$$\begin{aligned} \oint _{C}\nabla \varOmega _0 \cdot d{\varvec{x}}= \int _{S} \nabla \times \nabla \varOmega _0 \cdot d{\varvec{S}}, \end{aligned}$$
(C13)

where S is the surface enclosed by C. Equations (C12) and (C13) imply

$$\begin{aligned} \oint _{C}\nabla \varOmega _0 \cdot d{\varvec{x}}= 0=\int _{S} \nabla \times \nabla \varOmega _0 \cdot d{\varvec{S}}. \end{aligned}$$
(C14)

Since this result holds for any path C then it follows that the second equality in Eq. (C14) is valid for any surface S implying the vanishing of the curl of the gradient of \(\varOmega _0\) in all space

$$\begin{aligned} \nabla \times \nabla \varOmega _0=0. \end{aligned}$$
(C15)

To show Eq. (11) let us write Eq. (C14) in index notation

$$\begin{aligned} \oint _{C}\partial _{k}\varOmega _0\,dx^k= 0=\int _{S}\varepsilon _{kmn}\partial ^m\partial ^n\varOmega _0\,dS^k. \end{aligned}$$
(C16)

Consider now the antisymmetric tensor \(dS_{ij}=\varepsilon _{ijk}dS^k\) representing an infinitesimal element of the surface S. In terms of \(dS_{ij}\) we may write the differential surface vector in the following form \(dS^k=(1/2)\varepsilon ^{kij}dS_{ij}\). Using this result together with the identity \(\varepsilon _{kmn}\varepsilon ^{kij}=\delta ^{i}_{m}\delta ^{j}_{n}-\delta ^{j}_{m}\delta ^{i}_{n}\) we obtain \(\varepsilon _{kmn}\partial ^m\partial ^n\varOmega _0\,dS^k=(1/2)(\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega _0 dS_{ij}\), which is used in the second equality in Eq. (C16) to obtain the relation

$$\begin{aligned} 2\oint _{C}\partial _{k}\varOmega _0\,dx^k= 0=\int _{S}\,(\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega _0 \,\,dS_{ij}. \end{aligned}$$
(C17)

Since the first equality is valid for any path C then the second equality is valid for any surface S and this implies Eq. (11): \((\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega _0=0\) in all space.

Appendix D. Proof of Eq. (15)

Our approach to show Eq. (15) is as follows. We will show that the circulation of the gradient of the solid angle \(\varOmega \) along an arbitrary closed path C is non-vanishing: \(\oint _{C}\nabla \varOmega \cdot d {\varvec{x}}\ne 0\). Then we will transform this circulation via the Stokes theorem \(\oint _{C}\nabla \varOmega \cdot d {\varvec{x}}=\int _{S}\nabla \times \nabla \varOmega \cdot d {\varvec{S}}\) to show \(\nabla \times \nabla \varOmega = {\varvec{\delta }}_{\mathcal {C}}\). We will use this result to demonstrate Eq. (15).

Using Eq. (14), the circulation of the gradient of \(\varOmega \) takes the form

$$\begin{aligned} \oint _{C}\nabla \varOmega \cdot d {\varvec{x}}= \oint _{C}\nabla \varOmega _0 \cdot d {\varvec{x}} + 4\pi \oint _{C}{\varvec{\delta }}_{\mathcal {S}}\cdot d {\varvec{x}}. \end{aligned}$$
(D1)

We can transform the first circulation on the right-hand side of Eq. (D1) using Eq. (C10). This gives

$$\begin{aligned} \oint _{C}\nabla \varOmega \cdot d {\varvec{x}}= & {} \oint _{C}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3} -4\pi \oint _{C}{\varvec{\delta }}_{\mathcal {S}}\cdot d {\varvec{x}} + 4\pi \oint _{C}{\varvec{\delta }}_{\mathcal {S}}\cdot d {\varvec{x}} \nonumber \\= & {} 4\pi \bigg [\frac{1}{4\pi }\oint _{C}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}\bigg ] .\qquad \qquad \qquad \quad \quad \,\,\,\,\, \end{aligned}$$
(D2)

The quantity within the brackets is the Gauss linking number defined in Eq. (21). Therefore

$$\begin{aligned} \oint _{C} \nabla \varOmega \cdot d{\varvec{x}}= {\left\{ \begin{array}{ll} 4\pi l&{} \hbox {if} \,C \,\hbox {encloses} \,\mathcal {C} \\ 0 &{}\text {otherwise} \end{array}\right. } \end{aligned}$$
(D3)

Using the Stokes theorem we can transform the left-hand side of Eq. (D3),

$$\begin{aligned} \oint _{C}\nabla \varOmega \cdot d {\varvec{x}}=\int _{S}\nabla \times \nabla \varOmega \cdot d {\varvec{S}}, \end{aligned}$$
(D4)

where C is the boundary of the surface S. When C does not enclose \(\mathcal {C}\) then from Eq. (D3) we have

$$\begin{aligned} \oint _{C}\nabla \varOmega \cdot d {\varvec{x}}=0=\int _{S}\nabla \times \nabla \varOmega \cdot d {\varvec{S}}, \end{aligned}$$
(D5)

and thus \(\nabla \times \nabla \varOmega =0\) locally holds for any surface S not pierced by \(\mathcal {C}.\) However, this result does not hold in all space (i.e. globally) because if C encloses \(\mathcal {C}\) then the left-hand side of Eq. (D5) is non-vanishing and from Eq. (D3) we obtain

$$\begin{aligned} \oint _{C}\nabla \varOmega \cdot d {\varvec{x}}=4\pi l=\int _{S}\nabla \times \nabla \varOmega \cdot d {\varvec{S}}, \end{aligned}$$
(D6)

and thus the relation \(\nabla \times \nabla \varOmega \ne 0\) holds. To find the explicit form of this relation, we use Eq. (14): \(\nabla \varOmega = \nabla \varOmega _0 + 4\pi {\varvec{\delta }}_{\mathcal {S}}\) and therefore \(\nabla \times \nabla \varOmega = 4\pi {\varvec{\delta }}_{\mathcal {C}}\) where we have used Eq. (C15): \(\nabla \times \nabla \varOmega _0=0\) and Eq. (12): \(\nabla \times {\varvec{\delta }}_{\mathcal {S}}= {\varvec{\delta }}_{\mathcal {C}}\), where \({\varvec{\delta }}_{\mathcal {C}}=\oint _{\mathcal {C}}\delta ({\varvec{x}}- {\varvec{x}}')d {\varvec{x}} '\) is a line Dirac delta along the closed path \(\mathcal {C}\) which forms the boundary of \(\mathcal {S}\). Thus

$$\begin{aligned} \int _{S}\nabla \times \nabla \varOmega \cdot d {\varvec{S}}=4\pi \int _{S}{\varvec{\delta }}_{\mathcal {C}}\cdot d {\varvec{S}}, \end{aligned}$$
(D7)

which implies

$$\begin{aligned} \nabla \times \nabla \varOmega = 4\pi {\varvec{\delta }}_{\mathcal {C}}. \end{aligned}$$
(D8)

To prove Eq. (15), we write Eq. (D4) in index notation

$$\begin{aligned} \oint _{C}\partial _{k}\varOmega \,dx^k=\int _{S}\varepsilon _{kmn}\partial ^m\partial ^n\varOmega \,\,dS^k. \end{aligned}$$
(D9)

Consider now the antisymmetric tensor \(dS_{ij}=\varepsilon _{ijk}dS^k\) representing an infinitesimal element of the surface S. Using this result and the identity \(\varepsilon _{kmn}\varepsilon ^{kij}=\delta ^{i}_{m}\delta ^{j}_{n}-\delta ^{j}_{m}\delta ^{i}_{n}\), we obtain \(\varepsilon _{kmn}\partial ^m\partial ^n\varOmega \,dS^k=(1/2)(\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega dS_{ij}\), which is used in the second equality in Eq. (D9), obtaining

$$\begin{aligned} 2\oint _{C}\partial _{k}\varOmega \,dx^k=\int _{S}(\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega \,\,dS_{ij}. \end{aligned}$$
(D10)

When the path C does not enclose the curve \(\mathcal {C}\) then from Eq. (D3) we have

$$\begin{aligned} 2\oint _{C}\partial _{k}\varOmega \,dx^k=0=\int _{S}(\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega \,\,dS_{ij}, \end{aligned}$$
(D11)

which implies \((\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega =0\) for any surface S not pierced by \(\mathcal {C}.\) In this case \(\varOmega \) is locally single-valued. However, this is not the global case for if C encloses \(\mathcal {C}\) then the left-hand side of Eq. (D10) is non-vanishing and from Eq. (D3) we obtain

$$\begin{aligned} 2\oint _{C}\partial _{k}\varOmega \, dx^k=8\pi l=\int _{S}(\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega \,\,dS_{ij}. \end{aligned}$$
(D12)

which implies \((\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega \ne 0\) when C encircles \(\mathcal {C},\) or equivalently stated, when C crosses S. To find the explicit form of \((\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega \) we use Eqs. (D12) and (D9) to obtain

$$\begin{aligned} \int _{S}(\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega \,\,dS_{ij}=2\int _{S}\varepsilon _{kmn}\partial ^m\partial ^n\varOmega \,\,dS^k. \end{aligned}$$
(D13)

Equation (D8) in index notation reads \(4\pi ({\varvec{\delta }}_{\mathcal {C}})_k=\varepsilon _{kmn}\partial ^m\partial ^n\varOmega \). This result and \(dS^k=(1/2)\varepsilon ^{kij}dS_{ij}\) give the relation \(\varepsilon _{kmn}\partial ^m\partial ^n\varOmega \,dS^k=2\pi \varepsilon ^{ijk}({\varvec{\delta }}_{\mathcal {C}})_kdS_{ij}\) so that Eq. (D13) reduces to

$$\begin{aligned} \int _{S}\,(\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega \,\,dS_{ij}= 4\pi \int _{S} \varepsilon ^{ijk}({\varvec{\delta }}_{\mathcal {C}})_k \,dS_{ij}, \end{aligned}$$
(D14)

and this implies Eq. (15): \((\partial ^i\partial ^j - \partial ^j \partial ^i)\varOmega =4\pi \varepsilon ^{ijk}({\varvec{\delta }}_{\mathcal {C}})_k.\)

Appendix E. Proofs of Eqs. (74), (77), and (80)

The proof of Eq. (74) is based on a proof given by Gelca [41]. Similar proofs for Eqs. (77) and (80) will be given. Our general strategy is as follows: we will apply topological transformations to the linking number l (i.e. deformations of the associated curves in l) and show that these transformations leave the linking number invariant.

Proof of Eq. (74). Consider the linking number of the curves \({{\mathbb {C}}}\) and \(\mathcal {C}\)

$$\begin{aligned} \frac{1}{4\pi }\oint _{{{\mathbb {C}}}}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=l({{\mathbb {C}}},\mathcal {C}). \end{aligned}$$
(E1)

Let C be a closed path encircling the curve \(\mathcal {C}\) and let us deform the path C into the path \(C'\) via the transformation \(C \rightarrow C'\) and let \({{\mathbb {C}}}=C\cup (-C')\) be the union of C and \((-C')\) which bounds the surface \({{\mathbb {S}}}\) traced by C while being deformed into \(C'\). Accordingly, \({{\mathbb {C}}}=C\cup (-C')=\partial {{\mathbb {S}}}\) where \(\partial {{\mathbb {S}}}\) is the boundary of \({{\mathbb {S}}}\). We also assume C and \(C'\) encircle the same number of times \(\mathcal {C}\). Using the properties \(\oint _{{{\mathbb {C}}}\,=\,C\,\cup \,(-C')} = \oint _{C} + \oint _{-C'}\) and \(\oint _{-C'} = -\oint _{C'}\) it follows that Eq. (E1) can be decomposed as

$$\begin{aligned} \frac{1}{4\pi }\oint _{{{\mathbb {C}}}}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=\frac{1}{4\pi }\oint _{C}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3} - \frac{1}{4\pi }\oint _{C'}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}, \end{aligned}$$
(E2)

or equivalently,

$$\begin{aligned} l({{\mathbb {C}}},\mathcal {C})= l(C,\mathcal {C}) - l(C',\mathcal {C}), \end{aligned}$$
(E3)

where

$$\begin{aligned} \frac{1}{4\pi }\oint _{C}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=l(C,\mathcal {C}), \quad \frac{1}{4\pi }\oint _{C'}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=l(C',\mathcal {C}), \end{aligned}$$
(E4)

are the linking numbers of C and \(\mathcal {C}\), and \(C'\) and \(\mathcal {C}\), respectively. Therefore if \(l({{\mathbb {C}}},\mathcal {C})=0\) then \(l(C,\mathcal {C})=l(C',\mathcal {C})\) and this would proof Eq. (74). In Appendix C we demonstrated Eq. (C8) which can be re-arranged to obtain the relation

$$\begin{aligned} \oint _{\mathcal {C}}\frac{({\varvec{x}}' - {\varvec{x}})\times d {\varvec{x}}'}{|{\varvec{x}}- {\varvec{x}}'|^3}= \nabla \varOmega _0(\mathcal {S}) + 4\pi {\varvec{\delta }}_{\mathcal {S}}, \end{aligned}$$
(E5)

where \(\varOmega _0(\mathcal {S}) = \int _{\mathcal {S}}\{({\varvec{x}}' - {\varvec{x}})\cdot d {\varvec{S}}'/|{\varvec{x}}- {\varvec{x}}'|^3 \}\) is the single-valued solid angle subtended by \(\mathcal {C}\) and \({\varvec{\delta }}_{\mathcal {S}}=\int _{\mathcal {S}}\delta ({\varvec{x}}- {\varvec{x}}')d {\varvec{S}}'\) is the surface vector Dirac delta defined along the surface \(\mathcal {S}\) bounded by \(\mathcal {C}.\) Using Eq. (E5) in the left-hand side of Eq. (E1) and \([({\varvec{x}}' - {\varvec{x}})\times d {\varvec{x}}']\cdot d {\varvec{x}}=({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')\) it follows

$$\begin{aligned} l({{\mathbb {C}}},\mathcal {C})= \frac{1}{4\pi }\oint _{{{\mathbb {C}}}}\nabla \varOmega _0(\mathcal {S})\cdot d{\varvec{x}} + \oint _{{{\mathbb {C}}}}{\varvec{\delta }}_{\mathcal {S}}\cdot d {\varvec{x}}. \end{aligned}$$
(E6)

The first line integral in the right-hand side vanishes because \(\varOmega _0(\mathcal {C})\) is a single-valued function. Applying the Stokes theorem to the second line integral in the right-hand side, we obtain

$$\begin{aligned} l({{\mathbb {C}}},\mathcal {C})= \int _{{{\mathbb {S}}}}{\varvec{\delta }}_{\mathcal {C}}\cdot d {\varvec{S}}, \end{aligned}$$
(E7)

where \({{\mathbb {S}}}\) is the surface bounded by \({{\mathbb {C}}}\) and we have used Eq. (12): \(\nabla \times {\varvec{\delta }}_{\mathcal {S}} = {\varvec{\delta }}_{\mathcal {C}}\) where \({\varvec{\delta }}_{\mathcal {C}}= \oint _{\mathcal {C}}\delta ({\varvec{x}}- {\varvec{x}}')d {\varvec{x}}'\) is a line vector Dirac delta defined along \(\mathcal {C}.\) The surface \({{\mathbb {S}}}\) corresponds to the surface traced by the path C while being deformed into the path \(C'\) and therefore the curve \(\mathcal {C}\) never crosses the surface \({{\mathbb {S}}}\). Accordingly, the function \({\varvec{\delta }}_{\mathcal {C}}\) vanishes along the surface \({{\mathbb {S}}}\) and therefore \(\int _{{{\mathbb {S}}}}{\varvec{\delta }}_{\mathcal {C}}\cdot d {\varvec{S}}=0\) which gives \(l({{\mathbb {C}}},\mathcal {C})=0\). This result and Eq. (E3) imply \(l(C,\mathcal {C})=l(C',\mathcal {C})\) and this proves Eq. (74).

Proof of Eq. (77). Consider the linking number of the curves C and \({{\mathcal {C}}}\)

$$\begin{aligned} \frac{1}{4\pi }\oint _{C}\oint _{{{\mathcal {C}}}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=l(C,{{\mathcal {C}}}). \end{aligned}$$
(E8)

Let C be a closed path encircling the curve \(\mathcal {C}\). Let us deform the curve \(\mathcal {C}\) into the curve \(\mathcal {C}'\) via the transformation \(\mathcal {C} \rightarrow \mathcal {C}'\) and let \({{\mathcal {C}}}=\mathcal {C}\cup (-\mathcal {C'})\) be the union of \(\mathcal {C}\) and \((-\mathcal {C'})\) which bounds the surface \({{\mathcal {S}}}\) traced by \(\mathcal {C}\) while being deformed into \(\mathcal {C}'\). It follows that \({{\mathcal {C}}}=\mathcal {C}\cup (-\mathcal {C'})=\partial {{\mathcal {S}}}\) where \(\partial {{\mathcal {S}}}\) is the boundary of \({{\mathcal {S}}}\). We assume C encircles the same number of times \(\mathcal {C}\) and \(\mathcal {C}'\). Using the properties \(\oint _{{{\mathcal {C}}}\,=\,\mathcal {C}\,\cup \,(-\mathcal {C}')} = \oint _{\mathcal {C}} + \oint _{-\mathcal {C}'}\) it follows that Eq. (E8) can be decomposed as

$$\begin{aligned} \frac{1}{4\pi }\oint _{C}\oint _{{{\mathcal {C}}}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=\frac{1}{4\pi }\oint _{C}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3} - \frac{1}{4\pi }\oint _{C}\oint _{\mathcal {C}'}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}, \end{aligned}$$
(E9)

or equivalently,

$$\begin{aligned} l(C,{{\mathcal {C}}})= l(C,{\mathcal {C}})- l(C,\mathcal {C}'), \end{aligned}$$
(E10)

where

$$\begin{aligned} \frac{1}{4\pi }\oint _{C}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=l(C,\mathcal {C}), \quad \frac{1}{4\pi }\oint _{C}\oint _{\mathcal {C}'}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=l(C,\mathcal {C}'), \end{aligned}$$
(E11)

are the linking numbers of C and \(\mathcal {C}\), and C and \(\mathcal {C}'\), respectively. Therefore if \(l(C, {{\mathcal {C}}})=0\) then \(l(C,\mathcal {C})=l(C,\mathcal {C}')\) and this would prove Eq. (77). Following the same line of arguments that led to Eq. (C8), it follows that we can make the replacement \(\mathcal {S}\rightarrow {\mathcal {S}}\) in Eq. (C8) and obtain

$$\begin{aligned} \oint _{{\mathcal {C}}}\frac{({\varvec{x}}' - {\varvec{x}})\times d {\varvec{x}}'}{|{\varvec{x}}- {\varvec{x}}'|^3}= \nabla \varOmega _0({{\mathcal {S}}}) + 4\pi {\varvec{\delta }}_{{\mathcal {S}}}, \end{aligned}$$
(E12)

where \(\varOmega _0({{\mathcal {S}}}) = \int _{{\mathcal {S}}}\{({\varvec{x}}' - {\varvec{x}})\cdot d {\varvec{S}}'/|{\varvec{x}}- {\varvec{x}}'|^3 \}\) is the single-valued solid angle function subtended by the curve \({\mathcal {C}}\) and \({\varvec{\delta }}_{{\mathcal {S}}}=\int _{{\mathcal {S}}}\delta ({\varvec{x}}- {\varvec{x}}')d {\varvec{S}}'\) is the surface vector Dirac delta defined along the surface \({\mathcal {S}}\) bounded by \({\mathcal {C}}.\) Using Eq. (E12) and the relation \([({\varvec{x}}' - {\varvec{x}})\times d {\varvec{x}}']\cdot d {\varvec{x}}=({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')\) we obtain

$$\begin{aligned} l(C,{{\mathcal {C}}})= \frac{1}{4\pi }\oint _{C}\nabla \varOmega _0({{\mathcal {S}}})\cdot d {\varvec{x}} + \oint _{C}{\varvec{\delta }}_{{\mathcal {S}}}\cdot d {\varvec{x}}. \end{aligned}$$
(E13)

The first line integral on the right-hand side vanishes because \(\varOmega _0({\mathcal {S}})\) is single-valued. On the other hand, the surface \({\mathcal {S}}\) corresponds to the surface traced by the curve \(\mathcal {C}\) while being deformed into the curve \(\mathcal {C}'\) and therefore the path C never crosses the surface \({\mathcal {S}}\). Consequently, the function \({\varvec{\delta }}_{{\mathcal {S}}}\) vanishes along the path C so that \(\oint _{C}{\varvec{\delta }}_{{\mathcal {S}}}\cdot d {\varvec{x}}=0\) and this gives \(l(C,{{\mathcal {C}}})=0.\) This result and the right-hand side of Eq. (E10) imply \(l(C,{\mathcal {C}})=l(C,\mathcal {C}')\), result that proves Eq. (77).

Proof of Eq. (80). Consider the linking number of the curves \({\mathbb {C}}\) and \({\mathcal {C}}\)

$$\begin{aligned} \frac{1}{4\pi }\oint _{{{\mathbb {C}}}}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=l({{\mathbb {C}}},{\mathcal {C}}). \end{aligned}$$
(E14)

Let C be a closed path encircling the curve \(\mathcal {C}\). Let us simultaneously deform the path C into the path \(C'\) via the transformation \(C \rightarrow C'\) and deform the curve \(\mathcal {C}\) into the curve \(\mathcal {C}'\) via the transformation \(\mathcal {C}\rightarrow \mathcal {C}'.\) Let \({{\mathbb {C}}}=C\cup (-C')\) be the union of C and \((-C')\) which bounds the surface \({{\mathbb {S}}}\) traced by C while being deformed into \(C'\) and let \({{\mathcal {C}}}=\mathcal {C}\cup (-\mathcal {C'})\) be the union of \(\mathcal {C}\) and \((-\mathcal {C'})\) which bounds the surface \({{\mathcal {S}}}\) traced by \(\mathcal {C}\) while being deformed into \(\mathcal {C}'\). Accordingly, \({{\mathbb {C}}}=C\cup (-C')=\partial {{\mathbb {S}}}\) where \(\partial {{\mathbb {S}}}\) is the boundary of \({{\mathbb {S}}}\) and \({{\mathcal {C}}}=\mathcal {C}\cup (-\mathcal {C'})=\partial {{\mathcal {S}}}\) where \(\partial {{\mathcal {S}}}\) is the boundary of \({{\mathcal {S}}}\). We assume the path C encircles \(\mathcal {C}\) and \(\mathcal {C}'\) the same number of times the path \(C'\) encircles \(\mathcal {C}\) and \(\mathcal {C}'\). Using \(\oint _{{{\mathbb {C}}}\,=\,C\,\cup \,(-C')}\oint _{{\mathcal {C}}\,=\,\mathcal {C}\,\cup \,(-\mathcal {C}')}=(\oint _{C} - \oint _{C'})(\oint _{\mathcal {C}} - \oint _{\mathcal {C}'})=\oint _{C}\oint _{\mathcal {C}} - \oint _{C}\oint _{\mathcal {C}'} -\oint _{C'}\oint _{\mathcal {C}} + \oint _{C'}\oint _{\mathcal {C}'}\), \(\oint _{{{\mathbb {C}}}\,=\,C\,\cup \,(-C')}=\oint _{C} + \oint _{-C'}\), \(\oint _{-C'}=-\oint _{C'}\), \(\oint _{{{\mathcal {C}}}\,=\,\mathcal {C}\,\cup \,(-\mathcal {C}')}=\oint _{\mathcal {C}} + \oint _{-\mathcal {C}}\), and \(\oint _{-\mathcal {C}'}=-\oint _{\mathcal {C}'}\), we can decompose Eq. (E14) as

$$\begin{aligned} \frac{1}{4\pi }\oint _{{{\mathbb {C}}}}\oint _{{\mathcal {C}}}\frac{({\varvec{x}} \!-\! {\varvec{x}}')\!\cdot \! (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}= & {} \frac{1}{4\pi }\oint _{C}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3} -\frac{1}{4\pi } \oint _{C}\oint _{\mathcal {C}'}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}\nonumber \\&-\frac{1}{4\pi }\!\oint _{C'}\oint _{\mathcal {C}}\frac{({\varvec{x}} \!-\! {\varvec{x}}')\!\cdot \! (d{\varvec{x}} \!\times \!d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3} \!+\! \frac{1}{4\pi }\!\oint _{C'}\oint _{\mathcal {C}'}\frac{({\varvec{x}} \!-\! {\varvec{x}}')\!\cdot \! (d{\varvec{x}} \!\times \! d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}, \qquad \end{aligned}$$
(E15)

or equivalently,

$$\begin{aligned} l({\mathbb {C}},{{\mathcal {C}}})= l(C,{\mathcal {C}})-l(C,{\mathcal {C}'})-l(C',{\mathcal {C}})+l(C',{\mathcal {C}'}), \end{aligned}$$
(E16)

where the corresponding linking numbers are defined by

$$\begin{aligned} \frac{1}{4\pi }\oint _{C}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=l(C,\mathcal {C}),\quad \frac{1}{4\pi } \oint _{C}\oint _{\mathcal {C}'}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=l(C,\mathcal {C}'), \end{aligned}$$
(E17)
$$\begin{aligned} \frac{1}{4\pi }\oint _{C'}\oint _{\mathcal {C}}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=l(C',\mathcal {C}), \quad \frac{1}{4\pi }\oint _{C'}\oint _{\mathcal {C}'}\frac{({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')}{|{\varvec{x}}- {\varvec{x}}'|^3}=l(C',\mathcal {C}'). \end{aligned}$$
(E18)

Now, we have the result \(l(C',\mathcal {C})=l(C,\mathcal {C})\) because of Eqs. (E3) and (E7) (which follows from the transformation \(C\rightarrow C'\)). Also, we have the result \(=l(C,{\mathcal {C}})=l(C,{\mathcal {C}'})\) because of Eq. (E10) and (E13) (which follows from the transformation \(\mathcal {C}\rightarrow \mathcal {C}'\)). Using these results Eq. (E16) reduces to

$$\begin{aligned} l({\mathbb {C}},{{\mathcal {C}}})= l(C',{\mathcal {C}'})-l(C,{\mathcal {C}}). \end{aligned}$$
(E19)

Accordingly, if the left-hand side of Eq. (E19) vanishes then \(l(C,{\mathcal {C}})=l(C',{\mathcal {C}'})\) and this would prove Eq. (80). Using Eq. (E12) together with \([({\varvec{x}}' - {\varvec{x}})\times d {\varvec{x}}']\cdot d {\varvec{x}}=({\varvec{x}} - {\varvec{x}}')\cdot (d{\varvec{x}} \times d{\varvec{x}}')\) we can write

$$\begin{aligned} l({\mathbb {C}},{{\mathcal {C}}})= \frac{1}{4\pi }\oint _{{{\mathbb {C}}}}\nabla \varOmega _0({{\mathcal {S}}})\cdot d {\varvec{x}} + \oint _{{{\mathbb {C}}}}{\varvec{\delta }}_{{\mathcal {S}}}\cdot d {\varvec{x}}. \end{aligned}$$
(E20)

The first line integral on the right-hand side vanishes because \(\varOmega _0({\mathcal {S}})\) is single-valued. This result and the relations \(\oint _{{{\mathbb {C}}}\,=\,C\,\cup \,(-C')}=\oint _{C} + \oint _{-C'}\) and \(\oint _{-C'}=-\oint _{C'}\) yield \(l({\mathbb {C}},{{\mathcal {C}}})=\oint _{C}{\varvec{\delta }}_{{\mathcal {S}}}\cdot d {\varvec{x}}-\oint _{C'}{\varvec{\delta }}_{{\mathcal {S}}}\cdot d {\varvec{x}}.\) The surface \({\mathcal {S}}\) corresponds to the surface traced by the curve \(\mathcal {C}\) while being deformed into the curve \(\mathcal {C}'.\) Accordingly, neither the path C nor the path \(C'\) cross the surface \({\mathcal {S}}\) along which \({\varvec{\delta }}_{{\mathcal {S}}}\) is non-vanishing. Therefore \(\oint _{C}{\varvec{\delta }}_{{\mathcal {S}}}\cdot d {\varvec{x}}=0\) and \(\oint _{C'}{\varvec{\delta }}_{{\mathcal {S}}}\cdot d {\varvec{x}}=0\) which implies \(l({\mathbb {C}}, {{\mathcal {C}}})=0.\) This result and Eq. (E20) give \(l(C,{\mathcal {C}})=l(C',{\mathcal {C}'})\) and this proves Eq. (80).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heras, R. The Aharonov–Bohm effect in a closed flux line. Eur. Phys. J. Plus 137, 641 (2022). https://doi.org/10.1140/epjp/s13360-022-02832-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02832-2

Navigation