Skip to main content
Log in

On the origin of the thermal-field asymmetry in ionic polarization/depolarization of oxide in Si-MOS structures

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Based on the concepts of the significant role of the surface neutralization of positive ions at the boundaries of the oxide layer in the processes of ion transport in an insulating gap of MOS structures, the origin of a well-pronounced asymmetry in the temperature and temporal characteristics of the volume-charge ionic polarization/depolarization of an insulator are analyzed. The neutralization of ions occurs owing to the tunneling capture of electrons from semiconducting and metallic contacts. Experimental data obtained in a wide range of variations in the gate potential V g and related to the thermally stimulated and isothermal polarization of oxide in Si-MOS structures consistently support the asymmetry model that accounts for a higher degree of neutralization of ions and a higher coupling of ions to electrons at the metal surface (gate) than at the semiconductor surface. The transients exhibit three stages during polarization. The first of these is related to the transport of unneutralized (free) ions; in the initial stages of thermally stimulated and isothermal polarization for V g=const, the ions move in the oxide ballistically. In the second stage, a transition from the mode of free-ion drift to the modes of hyperbolic and (or) exponential kinetics of relaxation is observed; in the latter case, the current becomes virtually independent of the field, temperature, and the rates of the field or temperature scans and becomes a single-valued function of actual time. In this case, the law of relaxation is defined by the rate of tunneling ionization of neutral associations of ion + electron and (or) by their diffusion and thermal decomposition in the bulk of the insulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yamin, IEEE Trans. Electron Devices 12, 88 (1965).

    Google Scholar 

  2. M. Kuhn and D. J. Silversmith, J. Electrochem. Soc. 118, 966 (1971).

    Google Scholar 

  3. A. G. Tangena, N. F. de Rooij, and J. Middelhock, J. Appl. Phys. 49, 5576 (1978).

    ADS  Google Scholar 

  4. T. Hino and K. Yamashita, J. Appl. Phys. 50, 4879 (1979).

    Article  ADS  Google Scholar 

  5. E. I. Gol’dman, A. G. Zhdan, and G. V. Chucheva, Fiz. Tekh. Poluprovodn. (St. Petersburg) 31, 1468 (1997) [Semiconductors 31, 1268 (1997)].

    Google Scholar 

  6. E. I. Gol’dman, A. G. Zhdan, and G. V. Chucheva, Fiz. Tekh. Poluprovodn. (St. Petersburg) 33, 962 (1999) [Semiconductors 33, 877 (1999)].

    Google Scholar 

  7. G. S. Horner, M. Kleefstra, T. G. Miller, and M. A. Peters, Solid State Technol., No. 6, 79 (1995).

  8. G. Ya. Krasnikov, Élektron. Tekh., Ser. 3, No. 1, 67 (1996).

  9. T. Shimatani, S. Pidin, and M. Koyanagi, Jpn. J. Appl. Phys., Part 1 36(3B), 1659 (1997).

    Google Scholar 

  10. G. V. Chucheva, Candidate’s Dissertation (Moscow, 1998).

  11. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (New York, Wiley, 1982).

    Google Scholar 

  12. E. I. Gol’dman, A. G. Zhdan, and G. V. Chucheva, Fiz. Tekh. Poluprovodn. (St. Petersburg) 33, 933 (1999) [Semiconductors 33, 852 (1999)].

    Google Scholar 

  13. E.I. Gol’dman, A. G. Zhdan, and G. V. Chucheva, Prib. Tekh. Éksp., No. 6, 110 (1997).

  14. K. H. Nickolas and J. Woods, Br. J. Appl. Phys. 15, 783 (1964).

    ADS  Google Scholar 

  15. L. I. Grossweiner, J. Appl. Phys. 24, 1306 (1953).

    Article  Google Scholar 

  16. A. G. Zhdan and N. A. Lushnikov, Fiz. Tekh. Poluprovodn. (Leningrad) 16, 793 (1982) [Sov. Phys. Semicond. 16, 509 (1982)].

    Google Scholar 

  17. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970; Mir, Moscow, 1973).

    Google Scholar 

  18. S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  19. T. W. Hickmott, J. Appl. Phys. 46, 2583 (1975).

    Article  ADS  Google Scholar 

  20. M. R. Boudry and J. P. Stagg, J. Appl. Phys. 50, 942 (1979).

    Article  ADS  Google Scholar 

  21. S. R. Hofstein, IEEE Trans. Electron. Devices ED-13, 222 (1966).

    Google Scholar 

  22. G. Greeuw and J. F. Verwey, J. Appl. Phys. 56, 2218 (1984).

    Article  ADS  Google Scholar 

  23. E. I. Gol’dman, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34 (2000) (in press) [Phys. Solid State 34 (2000) (in press)].

  24. K. Vanhensden, W. L. Warren, R. A. B. Devine, et al., Nature (London) 368, 587 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 34, No. 6, 2000, pp. 677–681.

Original Russian Text Copyright © 2000 by Gol’dman, Zhdan, Chucheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gol’dman, E.I., Zhdan, A.G. & Chucheva, G.V. On the origin of the thermal-field asymmetry in ionic polarization/depolarization of oxide in Si-MOS structures. Semiconductors 34, 650–654 (2000). https://doi.org/10.1134/1.1188047

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1188047

Keywords

Navigation