Skip to main content
Log in

Nonlinear Electrophysical Phenomena in Ionic Dielectrics with a Complicated Crystal Structure

  • Published:
Russian Physics Journal Aims and scope

The methods of quasi-classical kinetic theory are used to study the phenomena of nonlinear relaxation polarization in ionic dielectrics with a complicated crystal lattice structure (layered crystals, ceramics, perovskites, vermiculites, etc.) characterized by high ionic conductivity. A special case of materials of this class are proton semiconductors and dielectrics (mica, talc, pyrophyllite, etc.) characterized by high proton conductivity in fairly wide ranges of field parameters (100 kV/m – 1000 MV/m) and temperatures (1–1500 K). Based on the continuity equation for the ion current, a generalized kinetic equation is constructed that describes transfer of electric charge in ionic dielectrics in an alternating polarizing field with blocking electrodes. The nonlinearity of the mathematical model is ensured by the dependences of the diffusion coefficients and ion mobility on the parameters of the inhomogeneous electric field in the dielectric. It is shown that the Fokker–Planck equation, known in the kinetic theory, is a zero approximation of the generalized nonlinear kinetic equation with respect to a small dimensionless parameter. The dielectric polarization is written from the solution of the Fokker–Planck equation in the infinite approximation of the perturbation theory (k = 1, 2, 3, ...) for an arbitrary value of the multiplicity factor r over the alternating field frequency. The spectra of a complex dielectric permittivity constructed at the fundamental frequency of the alternating field (r = 1) taking into account all subsequent (starting from the second one) approximations of the perturbation theory (k > 1) differ significantly from the classical laws of the Debye dispersion (corresponding to the first approximation of the perturbation theory (k = 1)). The theoretical foundations have been laid for the program algorithms of computer prediction of properties and parameters of electrical materials for the functional elements of the microelectronic device circuits, isolation technology, and non-volatile high-speed memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Tonkonogov, Usp. Fiz. Nauk, 168, Vyp. 1, 29–54 (1998).

  2. Sean Hart, Hechen Ren, Timo Wagner, et al., Nature Phys., 10, 638–643 (2014).

  3. Tan Wei, Sun Yong, Chen Hong, and Shen Shun-Qing, Sci. Rep. 4, 3842 (2014).

    Article  Google Scholar 

  4. B. M. Wells, A. V. Zayats, and V. A. Podolskiy, Phys. Rev. B, 89, 035111 (4) (2014).

  5. A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, et al., Phys. Rev. B, 92, 195127 (8) (2015).

  6. A. B. Khanikaev, M. S. Hossein, Tse Wang-Kong, et al., Nature Mater., 12, 233–239 (2013).

  7. Zh. Kudyshev, H. Reddy, U. Guler, et al., ACS Photonics, 4 (6), 1413–1420 (2017).

    Article  Google Scholar 

  8. Zh. A. Kudyshev, B. M. Wells, N. M. Litchinitser, and V. A. Podolskiy, ACS Photonics, 4 (10), 2470–2478 (2017).

    Article  Google Scholar 

  9. A. M. Antonova, A. V. Vorob’ev, and B. A. Lyalikov, Energetics: Ecology, Reliability, Safety, Proceed. of XIV All-Russian Scient. and Tech. Conf., Izd.TPU, Tomsk (2008).

    Google Scholar 

  10. A. Demin A. and L. A. Denyushkina, Proc. Int. Symp. Solid Oxide Fuel Cells, Aachen, Germany, Pennington, NG, USA (1997).

  11. V. A. Kalytka and M. V. Korovkin, Proton conductivity, LAP LAMBERT Academic Publishing (2015), http://www.lap-publishing.com.

  12. V. A. Kalytka and M. V. Korovkin, Russ. Phys. J., 59, No. 7, 994–1001 (2016).

    Article  Google Scholar 

  13. V. A. Kalytka and T. Yu. Nikonova, Proceedings of XIII International Scientific-Technical Conference “Actual Problems of Electronic Instrument Engineering (APEIE-2016)”. The electronic physical section, Novosibirsk (2016).

    Google Scholar 

  14. V. A. Kalytka, Z. K. Baimukhanov, A. I. Aliferov, and A. D. Mekhtiev, Proceedings of the Russian High School Academy of Sciences, 35, No. 2, 18–31 (2017). DOI: https://doi.org/10.17212/1727-2769-2017-2-18-31.

  15. V. A. Kalytka and M. V. Korovkin, Russ. Phys. J., 59, No. 12, 2151–2161 (2017).

    Article  Google Scholar 

  16. V. A. Kalytka, Z. K. Baimukhanov, and A. D. Mekhtiev, Proceedings the Russian High School Academy of Sciences, 32, No. 3, 7–21 (2016). DOI: https://doi.org/10.17212/1727-2769-2016-3-7-21.

  17. I. A. Kulagin, R. A. Ganeev, R. I. Tugushev, et al., Kvant. Elektron., 34, No. 7, 657–662 (2004).

    Article  ADS  Google Scholar 

  18. M. B. Belonenko, Kvant. Elektron., 25, No. 3, 255–258 (1998).

    Google Scholar 

  19. Yu. M. Annenkov, V. A. Kalytka, and M. V. Korovkin, Russ. Phys. J., 58, No. 1, 35–41 (2015).

    Article  Google Scholar 

  20. V. A. Kalytka, M. V. Korovkin, A. D. Mekhtiev, and A. D. Al’kina, Bulletin of Moscow Region State University. Series Physics and Mathematics, No.4, 39–54 (2017).

  21. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics. B. 5. Statistical Physics [in Russian], Nauka, Moscow (1976).

  22. V. A. Kalytka, Bulletin of Samara University. Nature Sciences Series, 23, No. 3, 71–83 (2017). DOI:https://doi.org/10.18287/2541-7525-2017-23-3-71-83.

  23. V. A. Kalytka, Bulletin of Moscow Region State University. Series Physics and Mathematics, No. 2, 61–75 (2018). DOI: https://doi.org/10.18384/2310-7251-2018-2-61-75.

  24. V. A. Kalytka, M. V. Korovkin, A. D. Mekhtiev, and A. V. Yurchenko, Russ. Phys. J., 61, No. 4, 757–769 (2018).

    Article  Google Scholar 

  25. R. Reijers and W. Haije, Energy Research Centre of the Netherlands (2008). ECN-E-08-091.

  26. R. Glöckner, A. Neiman, Y. Larring, and T. Norby, Solid State Ionics, 125, 369–376 (1999).

    Article  Google Scholar 

  27. J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM (Stopping and Range of Ions in Matter) (2012).

    Google Scholar 

  28. Yu. M. Annenkov, A. S. Ivashutenko, I. V. Vlasov, and A. V. Kabyshev, Bulletin of Tomsk Politechnical University, 308, No. 7, 35–38 (2005).

    Google Scholar 

  29. V. G. Kytin, V. A. Kul’bachinskii, D. Yu. Kondratyeva, et. al., Uchen. Zapis. Fiz. Fak. Mosk. Univer., No. 1, 1810501, 1–5 (2018).

  30. V. C. Khang, M. V. Korovkin, and L. G. Ananyeva, 20-th Int. Scientific Symposium of Students, Postgraduates and Young Scientists on Problems of Geology and Subsurface Development. IOP Conference Series Earth and Environmental Science, 43, No. 012004 (2016).

  31. K. M. Mambetova, S. M. Shandarov, A. I. Tat’yannikov, and S. V. Smirnov, Russ. Phys. J., 62, No. 4, 658–663 (2019). DOI: https://doi.org/10.17223/00213411/62/4/89.

  32. V. V. Promakhov, A. S. Zhukov, A. B. Vorozhtsov, et al., Russ. Phys. J., 62, No.5, 876–881 (2019). DOI: https://doi.org/10.17223/00213411/62/5/132.

  33. A. V. Shapovalov and A. Yu. Trifonov, Russ. Phys. J., 62, No.5, 835–847 (2019). DOI: https://doi.org/10.17223/00213411/62/5/95.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Kalytka, A. D. Mekhtiev, A. V. Bashirov, A. V. Yurchenko or A. D. Al’kina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 91–97, February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalytka, V.A., Mekhtiev, A.D., Bashirov, A.V. et al. Nonlinear Electrophysical Phenomena in Ionic Dielectrics with a Complicated Crystal Structure. Russ Phys J 63, 282–289 (2020). https://doi.org/10.1007/s11182-020-02033-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02033-3

Keywords

Navigation