Skip to main content
Log in

Recombination emission from InAs quantum dots grown on vicinal GaAs surfaces

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Photoluminescence (PL) spectra of InAs/GaAs heteroepitaxial structures with quantum dots (QDs) have been studied. The structures were grown by submonolayer migration-enhanced epitaxy on vicinal substrates with the amount of deposited InAs close to the critical value of 1.8 monolayer (ML). The origin and evolution of the structure of PL spectra were studied in relation to the direction and angle of misorientation, temperature, and power density and spectrum of the exciting radiation. A blue shift and narrowing of the PL band with increasing misorientation angle was established experimentally. The fact that QDs become smaller and more uniform in size is explained in terms of a lateral confinement of QDs on terraces with account taken of the step bunching effect. The temperature dependences of the positions and full widths at half-maximum (FWHM) of PL bands are fundamentally different for isolated and associated QDs. The exciton ground states contribute to all low-temperature spectral components. The excited exciton state contributes to the recombination emission from QDs, as evidenced by the temperature dependence of the integrated intensity of the PL bands. A quantitative estimate is given of the electronic structure of different families of InAs QDs grown on GaAs substrates misoriented by 7° in the [001] direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Fiz. Tekh. Poluprovodn. 32, 385 (1998) [Semicond. 32, 343 (1998)].

    Google Scholar 

  2. G. É. Tsyrlin, V. N. Petrov, M. V. Maksimov, et al., Fiz. Tekh. Poluprovodn. 31, 912 (1997) [Semicond. 31, 777 (1997)].

    Google Scholar 

  3. A. F. Tsatsul’nikov, B. V. Volovik, N. N. Ledentsov, et al., Fiz. Tekh. Poluprovodn. 32, 95 (1998) [Semicond. 32, 84 (1998)].

    Google Scholar 

  4. P. D. Wang, N. N. Ledentsov, C. M. Sotomayor Torres, et al., Appl. Phys. Lett. 64, 1526 (1994).

    ADS  Google Scholar 

  5. S. Ruvimov, P. Werner, K. Scheerschmidt, et al., Phys. Rev. B: Condens. Matter 51, 14766 (1995).

    Google Scholar 

  6. V. P. Evtikhiev, I. V. Kudryashov, E. Y. Kotel’nikov, et al., Fiz. Tekh. Poluprovodn. 32, 1482 (1998) [Semicond. 32, 1323 (1998)].

    Google Scholar 

  7. O. Brandt, L. Tapfer, K. Ploog, et al., Phys. Rev. B: Condens. Matter 44, 8043 (1991).

    ADS  Google Scholar 

  8. Y. Nabetani, A. Wakahara, and A. Sasaki, J. Appl. Phys. 78, 6461 (1995).

    Article  ADS  Google Scholar 

  9. L. Brusaferri, S. Sanguinetti, E. Grilli, et al., Appl. Phys. Lett. 69, 3354 (1996).

    Article  ADS  Google Scholar 

  10. M. Colocci, F. Bogani, L. Carraresi, et al., Appl. Phys. Lett. 70, 3140 (1997).

    Article  ADS  Google Scholar 

  11. H.-W. Ren, K. Nishi, S. Sugou, et al., Jpn. J. Appl. Phys. 37, 1548 (1998).

    Article  Google Scholar 

  12. S. Noda, T. Abe, and M. Tamura, Phys. Rev. B: Condens. Matter 58, 7181 (1998).

    ADS  Google Scholar 

  13. G. L. Rowland, T. J. C. Hosea, et al., Appl. Phys. Lett. 73, 3268 (1998).

    Article  ADS  Google Scholar 

  14. W. G. Stallard, A. S. Plaut, S. Thoms, et al., Appl. Phys. Lett. 73, 1898 (1998).

    Article  ADS  Google Scholar 

  15. G. É. Tsyrlin, V. N. Petrov, V. G. Dubrovskii, et al., Fiz. Tekh. Poluprovodn. 31, 902 (1997) [Semicond. 31, 768 (1997)].

    Google Scholar 

  16. Y. Nabetani, N. Yamamoto, T. Tokuda, et al., J. Cryst. Growth 146, 363 (1995).

    Article  Google Scholar 

  17. S. J. Xu, X. C. Wang, S. J. Chua, et al., Appl. Phys. Lett. 72, 3335 (1998).

    ADS  Google Scholar 

  18. Q. W. Mo, T. W. Fan, Q. Gong, et al., Appl. Phys. Lett. 73, 3518 (1998).

    Article  ADS  Google Scholar 

  19. H. Lee, R. Lowe-Webb, T. J. Johnson, et al., Appl. Phys. Lett. 73, 3556 (1998).

    ADS  Google Scholar 

  20. H.-W. Ren, K. Nishi, S. Sugou, et al., Jpn. J. Appl. Phys. Part 1 36, 4118 (1997).

    Google Scholar 

  21. D. Leonard, K. Pond, and P. M. Petroff, Phys. Rev. B: Condens. Matter 50, 11687 (1994).

    Google Scholar 

  22. J. M. Moison, F. Houzay, F. Barthe, et al., Appl. Phys. Lett. 64, 196 (1994).

    Article  ADS  Google Scholar 

  23. N. Ikoma and S. Ohkouchi, Jpn. J. Appl. Phys. 34, L724 (1995).

    Article  Google Scholar 

  24. O. Brandt, G. C. La Rocca, A. Heberle, et al., Phys. Rev. B: Condens. Matter 45, 3803 (1992).

    ADS  Google Scholar 

  25. Y. Tokura, H. Saito, and T. Fukui, J. Cryst. Growth 94, 46 (1989).

    Article  Google Scholar 

  26. V. P. Evtikhiev, V. E. Tokranov, A. K. Kryzhanovskii, et al., Fiz. Tekh. Poluprovodn. 32, 860 (1998) [Semicond. 32, 765 (1998)].

    Google Scholar 

  27. M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B: Condens. Matter 52, 11969 (1995).

    Google Scholar 

  28. P. M. Petroff, K. H. Schmidt, G. M. Ribeiro, et al., Jpn. J. Appl. Phys. Part 1 36, 4068 (1997).

    Article  Google Scholar 

  29. T. Ide, A. Yamashita, and T. Mizutani, Phys. Rev. B: Condens. Matter 46, 1905 (1992).

    ADS  Google Scholar 

  30. G. M. Guryanov, G. E. Cirlin, A. O. Golubok, et al., Surf. Sci. 352–354, 646 (1996).

    Google Scholar 

  31. M. Grundmann, R. Heitz, N. Ledentsov, et al., Superlattices Microstruct. 19, 81 (1996).

    Google Scholar 

  32. M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B: Condens. Matter 54, R2300 (1996).

  33. N. N. Ledentsov, P. D. Wang, S. M. Sotomayor Torres, et al., Phys. Rev. B: Condens. Matter 50, 12171 (1994).

  34. S. Raymond, S. Fafard, P. J. Poole, et al., Phys. Rev. B: Condens. Matter 54, 11548 (1996).

    Google Scholar 

  35. S. Yu. Verbin, B. V. Novikov, R. B. Jufer, et al., in Proceedings of Seventh International Symposium on Nanostructures: Physics and Technology (St. Petersburg, Russia, 1999), p. 63.

  36. M. J. Steer, D. J. Mowbray, W. R. Tribe, et al., Phys. Rev. B: Condens. Matter 54, 17738 (1996).

    Google Scholar 

  37. T. Saitoh, H. Takeuchi, J. Konda, et al., Jpn. J. Appl. Phys. 35, 1217 (1996).

    Google Scholar 

  38. A. Bossacchi, F. Colonna, S. Franchi, et al., J. Cryst. Growth 150, 185 (1995).

    Google Scholar 

  39. K. Mukai, N. Ohsuka, and M. Sugawara, Appl. Phys. Lett. 70, 2416 (1997).

    Article  ADS  Google Scholar 

  40. Z. M. Fang, K. Y. Ma, D. H. Jaw, et al., J. Appl. Phys. 67, 7034 (1990).

    Article  ADS  Google Scholar 

  41. W. Yang, R. R. Lowe-Webb, H. Lee, et al., Phys. Rev. B: Condens. Matter 56, 13314 (1997).

    Google Scholar 

  42. P. B. Joyce, T. J. Krzyzewski, G. R. Bell, et al., Phys. Rev. B: Condens. Matter 58, R15981 (1998).

  43. P. Chen, Q. Xie, A. Madhukar, et al., J. Vac. Sci. Technol. B 12, 2568 (1994).

    Google Scholar 

  44. H. Saito, K. Nishi, and S. Sugou, Appl. Phys. Lett. 73, 2742 (1998).

    ADS  Google Scholar 

  45. G. D. Lian, J. Yuan, L. M. Brown, et al., Appl. Phys. Lett. 73, 49 (1998).

    Article  ADS  Google Scholar 

  46. J. M. García, T. Mankad, P. O. Holtz, et al., Appl. Phys. Lett. 72, 3172 (1998).

    ADS  Google Scholar 

  47. A. J. Williamson and A. Zunger, Phys. Rev. B: Condens. Matter 58, 6724 (1998).

    ADS  Google Scholar 

  48. A. J. Williamson, A. Zunger, and A. Canning, Phys. Rev. B: Condens. Matter 57, R4253 (1998).

  49. I. E. Itskevich, S. G. Lyapin, I. A. Troyan, et al., Phys. Rev. B: Condens. Matter 58, R4250 (1998).

  50. F. Hatami, N. N. Ledentsov, M. Grundmann, et al., Appl. Phys. Lett. 67, 656 (1995).

    Article  ADS  Google Scholar 

  51. D. I. Lubyshev, P. P. González-Borrero, E. Marega, Jr., et al., Appl. Phys. Lett. 68, 205 (1996).

    Article  ADS  Google Scholar 

  52. G. Wang, S. Fafard, D. Leonard, et al., Appl. Phys. Lett. 64, 2815 (1994).

    ADS  Google Scholar 

  53. P. D. Wang, N. N. Ledentsov, C. M. Sotomayor Torres, et al., Phys. Rev. B: Condens. Matter 50, 1604 (1994).

    ADS  Google Scholar 

  54. M. Bayer, S. N. Walck, T. L. Reinecke, et al., Phys. Rev. B: Condens. Matter 57, 6584 (1998).

    ADS  Google Scholar 

  55. M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B: Condens. Matter 56, 4047 (1997).

    ADS  Google Scholar 

  56. H. Jiang and J. Singh, Phys. Rev. B: Condens. Matter 56, 4696 (1997).

    ADS  Google Scholar 

  57. P. N. Brounkov, A. Polimeni, S. T. Stoddart, et al., Appl. Phys. Lett. 73, 1092 (1998).

    ADS  Google Scholar 

  58. H. Lee, W. Yang, and P. C. Sercel, Phys. Rev. B: Condens. Matter 55, 9757 (1997).

    ADS  Google Scholar 

  59. F. Bogani, L. Carraresi, R. Mattolini, et al., Solid-State Electron. 40, 363 (1996).

    Article  Google Scholar 

  60. H. Yu, S. Lycett, C. Roberts, et al., Appl. Phys. Lett. 69, 4087 (1996).

    ADS  Google Scholar 

  61. J. Kim, L.-W. Wang, and A. Zunger, Phys. Rev. B: Condens. Matter 57, R9408 (1998).

  62. R. Heitz, M. Grundmann, N. N. Ledentsov, et al., Appl. Phys. Lett. 68, 361 (1996).

    ADS  Google Scholar 

  63. S. Fafard, D. Leonard, J. L. Merz, et al., Appl. Phys. Lett. 65, 1388 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 34, No. 4, 2000, pp. 467–476.

Original Russian Text Copyright © 2000 by Talalaev, B. Novikov, Verbin, A. Novikov, Dinh Son Thath, Shchur, Gobsch, Goldhahn, Stein, Golombek, Tsyrlin, Petrov, Ustinov, Zhukov, Egorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talalaev, V.G., Novikov, B.V., Verbin, S.Y. et al. Recombination emission from InAs quantum dots grown on vicinal GaAs surfaces. Semiconductors 34, 453–461 (2000). https://doi.org/10.1134/1.1188007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1188007

Keywords

Navigation