Skip to main content
Log in

Raman and photoluminescence properties of type II GaSb/GaAs quantum dots on (001) Ge substrate

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We investigate structural Raman and photoluminescence properties of type II GaSb/GaAs quantum dots (QDs) grown on (001) Ge substrate by molecular beam epitaxy. Array of self-assembled GaSb QDs having an areal density of ∼1.66 × 1010 dots/cm2 is obtained by a growth at relatively low substrate temperature (450 °C) on a GaAs surface segmented into anti-phase domains (APDs). Most of QDs form in one APD area. However, a few QDs can be observed at the APD boundaries. Raman spectroscopy is used to probe the strain in GaAs layer. Slight redshift of both LO and TO GaAs peaks are observed when GaSb QDs are buried into GaAs matrix. Optical properties of capped QDs are characterized by photoluminescence measurement at low temperatures (20 K and 30 K). Emission peaks of GaSb/GaAs QDs are found in the range of 1.0-1.3 eV at both temperatures. Slight redshift is observed when the laser excitation power is increased at 20 K while blueshift of QD peak is observed at 30 K. We attribute this abnormal behavior to the contribution of overlapped GaSb wetting layer peak in the PL emission as well as the feature of type II band structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Philips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, Appl. Phys. Rev. 2, 0021302 (2015).

    Article  Google Scholar 

  2. K. Laouthaiwattana, O. Tangmattajittakul, S. Suraprapapich, S. Thainoi, P. Changmuang, S. Kanjanachuchai, S. Ratanathamaphan, and S. Panyakeow, Sol. Energ. Mat. Sol. C. 93, 746 (2009).

    Article  Google Scholar 

  3. S. Kiravittaya, U. Manmontri, S. Sopitpan, S. Ratanathammaphan, C. Antarasen, M. Sawadsaringkarn, and S. Panyakeow, Sol. Energ. Mat. Sol. C. 68, 89 (2001).

    Article  Google Scholar 

  4. P. J. Carrington, A. S. Mahajumi, M. C. Wagener, J. R. Botha, Q. Zhuang, and A. Krier, Physica B 407, 1493 (2012).

    Article  Google Scholar 

  5. F. Xu, X.-G. Yang, S. Luo, Z.-R. Lv, and T. Yang, J. Appl. Phys. 116, 133102 (2014).

    Article  Google Scholar 

  6. W. Tantiweerasophon, S. Thainoi, P. Changmuang, S. Kanjanachuchai, S. Rattanathammaphan, and S. Panyakeow, J. Cryst. Growth 323, 254 (2010).

    Article  Google Scholar 

  7. M. Kunrugsa, S. Kiravittaya, S. Sopitpan, S. Ratanathammaphan, and S. Panyakeow, J. Cryst. Growth 401, 441 (2014).

    Article  Google Scholar 

  8. M. Bosi and G. Attolini, Prog. Cryst. Growth Ch. 56, 146 (2010).

    Article  Google Scholar 

  9. L. Lazzarini, L. Nazi, G. Salviati, C. Z. Fregonara, Y. Li, L. J. Gilling, C. Hardingham, and D. B. Holt, Micron 31, 217 (2000).

    Article  Google Scholar 

  10. M. Hayne, R. J. Young, E. P. Smakman, T. Nowozin, P. Hodgson, J. K. Garleff, P. Rambabu, P. M. Koenraad, A. Marent, L. Bonato, A. Schliwa, and D. Bimberg, J. Phys. D 46, 264001 (2013).

    Article  Google Scholar 

  11. K. Yamaguchi, S. Tsukamoto, and K. Matsuda, Handbook of Self Assembled Semiconductor Nanostructure for Novel Devices in Photonics and Electronics (Chapter 8), p. 271, Z. Wang (Ed.) (2008).

  12. J. Oh and J. C. Campbell, Mater. Sci. Semicond. Process. 13, 185 (2010).

    Article  Google Scholar 

  13. K. Reginski, J. Muszalski, V. V. Preobrazhenskii, and D. I. Lubyshev, Thin Solid Films 267, 54 (1995).

    Article  Google Scholar 

  14. E. P. Smakman, J. K. Garleff, R. J. Young, M. Hayne, P. Rambabu, and P. M. Koenraad, Appl. Phys. Lett. 100, 142116 (2012).

    Article  Google Scholar 

  15. D. Kohen, S. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, J. Cryst. Growth 421, 58 (2015).

    Article  Google Scholar 

  16. A. Ito, M. Ichimura, A. Usami, T. Wada, and H. Kano, J. Appl. Phys. 72, 2531 (1992).

    Article  Google Scholar 

  17. K. Suzuki and Y. Arakawa, J. Cryst. Growth 201/202, 1205 (1999).

    Article  Google Scholar 

  18. C. Jiang and H. Sakaki, Physica E 26, 180 (2005).

    Article  Google Scholar 

  19. F. Hatami, M. Grundmann, N. N. Ledentsov, F. Heinrichsdorff, R. Heitz, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, Phys. Rev. B 57, 4635 (1998).

    Article  Google Scholar 

  20. S. Kiravittaya, T. Poempool, S. Thainoil, S. Kanjanachuchai, S. Ratanathammaphan, and S. Panyakeow, ECTICON (2016). (accepted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somsak Panyakeow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zon, Poempool, T., Kiravittaya, S. et al. Raman and photoluminescence properties of type II GaSb/GaAs quantum dots on (001) Ge substrate. Electron. Mater. Lett. 12, 517–523 (2016). https://doi.org/10.1007/s13391-016-4016-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-4016-x

Keywords

Navigation