Skip to main content
Log in

Nonlinearity of acoustic effects and high-frequency electrical conductivity in GaAs/AlGaAs heterostructures under conditions of the integer quantum Hall effect

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The absorption coefficient for surface acoustic wave Γ and variation in the wave velocity ΔV/V were measured in GaAs/AlGaAs heterostructures; the above quantities are related to interaction of the wave with two-dimensional electron gas and depend nonlinearly on the power of the wave. Measurements were performed under conditions of the integer quantum Hall effect (IQHE), in which case the two-dimensional electron gas was localized in a random fluctuation potential of impurities. The dependences of the components σ1(E) and σ2(E) of high-frequency conductivity σ=σ 1 2 on the electric field of the surface wave were determined. In the range of the conductivity obeying the Arrhenius law

, the results obtained are interpreted in terms of the Shklovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) theory of nonlinear percolation-based conductivity, which makes it possible to estimate the magnitude of the fluctuation potential of impurities. The dependences σ1(E) and σ2(E) in the range of high-frequency hopping electrical conductivity, in which case

and the theory of nonlinearities has not been yet developed, are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Drummond, M. Keever, W. Kopp, et al., Electron. Lett. 17, 545 (1981).

    Google Scholar 

  2. J. Shah, A. Pinczuk, H. L. Störmer, et al., Appl. Phys. Lett. 42, 55 (1983); J. Shah, A. Pinczuk, H. L. Störmer, et al., Appl. Phys. Lett. 44, 322 (1984).

    Article  ADS  Google Scholar 

  3. M. G. Blyumina, A. G. Denisov, T. A. Polyanskaya, et al., Pis’ma Zh. Éksp. Teor. Fiz. 44, 257 (1986) [JETP Lett. 44, 331 (1986)].

    Google Scholar 

  4. E. Chow, H. P. Wei, S. M. Girvin, et al., Phys. Rev. Lett. 77, 1143 (1996) (and the references therein).

    Article  ADS  Google Scholar 

  5. P. J. Price, J. Appl. Phys. 53, 6863 (1982); V. Karpus, Fiz. Tekh. Poluprovod. 22, 439 (1988) [Sov. Phys. Semicond. 22, 268 (1988)].

    ADS  Google Scholar 

  6. I. L. Drichko, A. M. D’yakonov, V. D. Kagan, et al., Fiz. Tekh. Poluprovodn. 31, 1357 (1997) [Semicond. 31, 1170 (1997)].

    Google Scholar 

  7. G. Ebert, K. von Klitzing, K. Ploog, et al., J. Phys. C 16, 5441 (1983); P. Streda and K. von Klitzing, J. Phys. C 17, L483 (1984).

    ADS  Google Scholar 

  8. M. E. Gage, R. F. Dziuba, B. F. Field, et al., Phys. Rev. Lett. 51, 1374 (1983).

    ADS  Google Scholar 

  9. S. Komiyama, T. Takamasu, S. Hiyamizu, et al., Solid State Commun. 54, 479 (1985).

    Article  Google Scholar 

  10. V. L. Pokrovsky, L. P. Pryadko, and A. L. Talapov, J. Phys.: Condens. Matter 2, 1583 (1990).

    Article  ADS  Google Scholar 

  11. M. Furlan, Phys. Rev. B.: Condens. Matter 57, 14818 (1998) (and the references therein).

  12. D. G. Polyakov and B. I. Shklovskii, Phys. Rev. B: Condens. Matter 48, 11167 (1993).

    Google Scholar 

  13. A. M. Kreshchuk, E. P. Laurs, T. A. Polyanskaya, et al., Fiz. Tekh. Poluprovodn. 22, 2162 (1988) [Sov. Phys. Semicond. 22, 1364 (1988)].

    Google Scholar 

  14. I. L. Drichko, A. M. Diakonov, V. D. Kagan, et al., in Proceedings of 24th International Conference on the Physics of Semiconductors, Jerusalem, Israel, 1998, Ed. by D. Gershoni (World Scientific, 1998), CD-ROM.

  15. I. L. Drichko, A. M. D’yakonov, A. M. Kreshchuk, et al., Fiz. Tekh. Poluprovodn. 31, 451 (1997) [Semicond. 31, 384 (1997)].

    Google Scholar 

  16. I. L. Drichko, A. M. D’yakonov, I. Yu. Smirnov, et al., Fiz. Tekh. Poluprovodn. 33, 979 (1999) [Semicond. 33, 892 (1999)].

    Google Scholar 

  17. V. D. Kagan, Fiz. Tekh. Poluprovodn. 31, 470 (1997) [Semicond. 31, 407 (1997)].

    Google Scholar 

  18. B. I. Shklovskii, Fiz. Tekh. Poluprovodn. 13, 93 (1979) [Sov. Phys. Semicond. 13, 53 (1979)].

    Google Scholar 

  19. B. I. Shklovskii and A. L. Éfros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer-Verlag, New York, 1984).

    Google Scholar 

  20. A. L. Éfros, Zh. Éksp. Teor. Fiz. 89, 1834 (1985) [Sov. Phys. JETP 62, 1057 (1985)].

    Google Scholar 

  21. A. L. Éfros, F. G. Pikus, and V. G. Barnett, Phys. Rev. B: Condens. Matter 47, 2233 (1993).

    ADS  Google Scholar 

  22. Yu. M. Gal’perin and É. Ya. Priev, Fiz. Tverd. Tela 29, 3016 (1987) [Sov. Phys. Solid State 29, 1733 (1987)].

    Google Scholar 

  23. A. Wixforth, J. Scriba, M. Wassermeier, et al., Phys. Rev. B: Condens. Matter 40, 7874 (1989).

    ADS  Google Scholar 

  24. A. Schenstrom, M. Levy, B. K. Sarma, et al., Solid State Commun. 68, 357 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 34, No. 4, 2000, pp. 436–442.

Original Russian Text Copyright © 2000 by Drichko, D’yakonov, Smirnov, Toropov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drichko, I.L., D’yakonov, A.M., Smirnov, I.Y. et al. Nonlinearity of acoustic effects and high-frequency electrical conductivity in GaAs/AlGaAs heterostructures under conditions of the integer quantum Hall effect. Semiconductors 34, 422–428 (2000). https://doi.org/10.1134/1.1188000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1188000

Keywords

Navigation