Skip to main content
Log in

Surface of n-type InP (100) passivated in sulfide solutions

  • Semiconductor Structures, Interfaces and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

X-ray photoelectron spectroscopy, the Kelvin probe method, and Raman scattering are used to study the properties of the surface of n-type InP (100) passivated by ammonium sulfide dissolved in water or in t-butyl alcohol. Both treatments are found to cause a reduction in the depth of the depleted skin layer, a shift of the surface Fermi level toward the conduction band, and an enhancement of the electron work function and increase in the ionization energy of the semiconductor. The processing in the alcohol solution yields a stronger effect than processing in an aqueous solution. For sulfidization in an alcohol solution the surface Fermi level shifts by 0.2 eV, while the ionization energy increases by 0.53 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ishimura, K. Sasaki, and H. Tokuda, Inst. Phys. Conf. Ser. 106, 405 (1990).

    Google Scholar 

  2. R. Iyer and D. L. Lile, Appl. Phys. Lett. 59, 437 (1991).

    Article  ADS  Google Scholar 

  3. H. Oigawa, J. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, Jpn. J. Appl. Phys. 30, L322 (1991).

    Article  Google Scholar 

  4. T. K. Paul and D. N. Bose, J. Appl. Phys. 70, 7387 (1991).

    ADS  Google Scholar 

  5. A. J. Howard, C. I. H. Ashby, J. A. Lott, R. P. Schneider, and R. F. Corless, J. Vac. Sci. Technol. A 12, 1063 (1994).

    ADS  Google Scholar 

  6. L. F. DeChiaro and C. J. Sandroff, IEEE Trans. Electron Devices 39, 561 (1992).

    Article  Google Scholar 

  7. C. W. Wilmsen, K. M. Geib, J. Shin, R. Iyer, D. L. Lile, and J. J. Pouch, J. Vac. Sci. Technol. B 7, 851 (1989).

    Article  Google Scholar 

  8. Y. Fukuda, Y. Suzuki, N. Sanada, S. Sasaki, and T. Ohsawa, J. Appl. Phys. 76, 3059 (1994).

    ADS  Google Scholar 

  9. R. W. M. Kwok and W. M. Lau, J. Vac. Sci. Technol. A 10, 2515 (1992).

    ADS  Google Scholar 

  10. T. Chassé, H. Peisert, P. Streubel, and R. Szargan, Surf. Sci. 331–333, 434 (1995).

    Google Scholar 

  11. V. N. Bessolov, E. V. Konenkova, and M. V. Lebedev, J. Vac. Sci. Technol. B 14, 2761 (1996).

    Article  Google Scholar 

  12. V. N. Bessolov, M. V. Lebedev, and D. R. T. Zahn, J. Appl. Phys. 82, 2640 (1997).

    Article  ADS  Google Scholar 

  13. V. N. Bessolov, M. V. Lebedev, Yu. M. Shernyakov, and B. V. Tsarenkov, Mater. Sci. Eng., B 44, 380 (1997).

    Google Scholar 

  14. R. Hakimi and M.-C. Amann, Semicond. Sci. Technol. 12, 778 (1997).

    Article  ADS  Google Scholar 

  15. C. S. Sundararaman, S. Poulin, J. F. Currie, and R. Leonelli, Can. J. Phys. 69, 329 (1991).

    ADS  Google Scholar 

  16. R. Maeckel, H. Baumgaertner, and J. Ren, Rev. Sci. Instrum. 64, 694 (1993).

    ADS  Google Scholar 

  17. D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton/ Ann Arbor/ London/ Tokyo (1995).

    Google Scholar 

  18. G. Bauer and W. Richter, Optical Characterization of Epitaxial Semiconductor Layers, Springer, Berlin (1996).

    Google Scholar 

  19. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  ADS  Google Scholar 

  20. W. Haes and R. Loudon, Scattering of Light by Crystals, Wiley, N.Y. (1978).

    Google Scholar 

  21. M. S. Carpenter, M. R. Melloch, B. A. Cowans, Z. Dardas, and W. N. Delgass, J. Vac. Sci. Technol. B 7, 845 (1989).

    Article  Google Scholar 

  22. W. M. Lau, R. W. M. Kwok, and S. Ingrey, Surf. Sci. 271, 579 (1992).

    Article  Google Scholar 

  23. Y. Tao, A. Yelon, E. Sacher, Z. H. Lu, and M. J. Graham, Appl. Phys. Lett. 60, 2669 (1992).

    ADS  Google Scholar 

  24. I. K. Han, E. K. Kim, J. I. Lee, S. H. Kim, K. N. Kang, Y. Kim, H. Lim, and H. L. Park, J. Appl. Phys. 81, 6986 (1997).

    ADS  Google Scholar 

  25. H. Sugahara, M. Oshima, H. Oigawa, H. Shigekawa, and Y. Nannichi, J. Appl. Phys. 69, 4349 (1991).

    Article  ADS  Google Scholar 

  26. J. Geurts, Surf. Sci. Rep. 18, 1 (1993).

    Article  Google Scholar 

  27. V. N. Bessolov, E. V. Konenkova, and M. V. Lebedev, Mater. Sci. Eng., B 44, 376 (1997).

    Google Scholar 

  28. Z. Tian, M. W. C. Dharma-wardana, Z. H. Lu, R. Cao, and L. J. Lewis, Phys. Rev. B 55, 5376 (1997).

    ADS  Google Scholar 

  29. L. Jedral, H. E. Ruda, R. Sodhi, H. Ma, and L. Mannik, Can. J. Phys. 70, 1050 (1992).

    ADS  Google Scholar 

  30. W. Mönch, J. Vac. Sci. Technol. B 7, 1216 (1989).

    Google Scholar 

  31. V. N. Bessolov, A. F. Ivankov, and M. V. Lebedev, J. Vac. Sci. Technol. B 13, 1018 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 33, 429–434 (April 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessolov, V.N., Lebedev, M.V. & Zahn, D.R.T. Surface of n-type InP (100) passivated in sulfide solutions. Semiconductors 33, 416–420 (1999). https://doi.org/10.1134/1.1187895

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187895

Keywords

Navigation