Skip to main content
Log in

Influence of indium doping on the formation of silicon-(gallium vacancy) complexes in gallium arsenide grown by molecular-beam epitaxy at low temperatures

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Low-temperature photoluminescence (PL) studies of gallium-arsenide layers grown by molecular-beam epitaxy at low (200 °C) temperatures (LT GaAs) and doped with silicon or a combination of silicon and indium have been performed. The PL spectra of as-grown samples reveal a shallow acceptor-based line only. After annealing, an additional line at ∼1.2 eV appears, which is attributable to SiGa-V Ga complexes. The activation energy of complex formation is found to be close to the activation energy of migration of gallium vacancies and is equal to 1.9±0.3 eV for LT GaAs: Si. It is found that doping with a combination of silicon and indium leads to an increase in the activation energy of formation of SiGa-V Ga complexes to 2.5±0.3 eV. We believe that this increase in the activation energy is controlled by the gallium vacancy-indium interaction through local lattice deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. W. Williams, Phys. Rev. 168, 922 (1968).

    ADS  Google Scholar 

  2. E. W. Williams and H. B. Bell, in Semiconductors and Semimetals, Vol. 8, edited by R. K. Willardson and G. C. Beer (Academic Press, New York), p. 321. G. C. Beer (Academic Press, N. Y.-London) 8, 321 (1972).

  3. N. S. Averkiev, A. A. Gutkin, M. A. Reshchikov, and V. E. Sedov, Fiz. Tekh. Poluprovodn. 30, 1123 (1996) [Semiconductors 30, 595 (1996)].

    Google Scholar 

  4. M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. Smith, B. Y. Tsaur, and A. R. Calawa, Appl. Phys. Lett. 54, 1881 (1989).

    Article  ADS  Google Scholar 

  5. J. Gebauer, R. Krause-Rehberg, S. Eichler, M. Luysberg, H. Sohn, and E. R. Weber, Appl. Phys. Lett. 71, 638 (1997).

    Article  ADS  Google Scholar 

  6. X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, Appl. Phys. Lett. 67, 279 (1995).

    ADS  Google Scholar 

  7. Z. Liliental-Weber, X. W. Lin, J. Washburn, and W. Schaff, Appl. Phys. Lett. 66, 2086 (1995).

    Article  ADS  Google Scholar 

  8. C. Kisielowski, A. R. Calawa, and Z. Liliental-Weber, J. Appl. Phys. 80, 156 (1996).

    Article  ADS  Google Scholar 

  9. N. A. Bert, V. V. Chaldyshev, Yu. G. Musikhin, A. A. Suvorova, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, and P. Werner, Appl. Phys. Lett. 74, 1442 (1999).

    ADS  Google Scholar 

  10. N. A. Bert, A. I. Veinger, M. D. Vilisova, S. I. Goloshchapov, I. V. Ivonin, S. V. Kozyrev, A. E. Kunitsyn, L. G. Lavrent’eva, D. I. Lubyshev, V. V. Preobrazhenskii, B. R. Semyagin, V. V. Tret’yakov, V. V. Chaldyshev, and M. P. Yakubenya, Fiz. Tverd. Tela (St. Petersburg) 35, 2609 (1993) [Phys. Solid State 35, 1289 (1993)].

    Google Scholar 

  11. I. A. Bobrovnikova, L. G. Lavrentieva, M. P. Rusaikin, and M. D. Vilisova, J. Cryst. Growth 123, 529 (1992).

    Article  Google Scholar 

  12. J.-L. Rouviere, Y. Kim, J. Cunningham, J. A. Rentschler, A. Bourret, and A. Ourmazd, Phys. Rev. Lett. 68, 2798 (1992).

    Article  ADS  Google Scholar 

  13. D. E. Bliss, W. Walukiewicz, J. W. Ager, E. E. Haller, K. T. Chan, and S. Tanigawa, J. Appl. Phys. 71, 1699 (1992).

    Article  ADS  Google Scholar 

  14. S. A. McQuaid, R. C. Newman, M. Missous, and S. O’Hagan, Appl. Phys. Lett. 61, 3008 (1992).

    Article  ADS  Google Scholar 

  15. N. A. Bert, V. V. Chaldyshev, A. E. Kunitsyn, Yu. G. Musikhin, N. N. Faleev, V. V. Tretyakov, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Appl. Phys. Lett. 70, 3146 (1997).

    Article  ADS  Google Scholar 

  16. M. Luysberg, H. Sohn, A. Prasad, P. Specht, Z. Liliental-Weber, E. R. Weber, J. Gebauer, and R. Krause-Rehberg, J. Appl. Phys. 83, 561 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 33, 1187–1191 (October 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunitsyn, A.E., Chaldyshev, V.V., Vul’, S.P. et al. Influence of indium doping on the formation of silicon-(gallium vacancy) complexes in gallium arsenide grown by molecular-beam epitaxy at low temperatures. Semiconductors 33, 1080–1083 (1999). https://doi.org/10.1134/1.1187869

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187869

Keywords

Navigation