Skip to main content
Log in

Effect of the growth temperature on the formation of deep-level defects and optical properties of epitaxial BGaN

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrical, optical, and high-resolution photoinduced transient spectroscopy (HRPITS) measurements are used for the characterization of boron gallium nitride (BGaN) epitaxial layers (containing about 1% of B) grown by MOCVD in the temperature range of 840–1090 °C. It is argued that the main influence on the changes in the electrical properties of BGaN layers is caused by the generation of interstitial boron (Bi) that accumulates at the grain boundaries regions as well as out diffuses toward the layers surface. The HRPITS measurements show that the growth temperature also has a significant influence on the concentrations of deep-level defects formed within the BGaN grains. The photoluminescence measurements revealed a band at 2 eV. The determined by HRPITS trap energies give a base for the explanation of characteristics for the BGaN broad luminescence band around 2 eV. It is highlighted that such defects as interstitial Bi+ and gallium vacancies (VGa) are mobile and can be essential for understanding the electrical and optical properties of BGaN epitaxial layers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Gautier S, Patriarche G, Moudakir T et al (2011) Deep structural analysis of novel BGaN material layers grown by MOVPE. J Cryst Growth 315:288–291. https://doi.org/10.1016/j.jcrysgro.2010.08.042

    Article  CAS  Google Scholar 

  2. Williams L, Kioupakis E (2017) BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs. Appl Phys Lett 111:211107. https://doi.org/10.1063/1.4997601

    Article  CAS  Google Scholar 

  3. Park SH, Hong WP, Kim JJ et al (2017) High-efficiency BGaN/AlN quantum wells for optoelectronic applications in ultraviolet spectral region. Int Conf Numer Simul Optoelectron Devices (NUSOD). https://doi.org/10.1109/nusod.2017.8009999

    Article  Google Scholar 

  4. Said A, Debbichi M, Said M (2016) Theoretical study of electronic and optical properties of BN, GaN and BxGa1−xN in zinc blende and wurtzite structures. Optik 127:9212–9221. https://doi.org/10.1016/j.ijleo.2016.06.103

    Article  CAS  Google Scholar 

  5. Salvestrini JP, Ahaitouf A, Srour H et al (2012) Tuning of internal gain, dark current and cutoff wavelength of UV photodetectors using quasi-alloy of BGaN-GaN and BGaN-AlN superlattices In. Quantum Sens Nanophotonic Devices IX 8268:82682S. https://doi.org/10.1117/12.914800

    Article  CAS  Google Scholar 

  6. Ougazzaden A, Gautier S, Moudakir T et al (2008) Bandgap bowing in BGaN thin films. Appl Phys Lett 93:083118. https://doi.org/10.1063/1.2977588

    Article  CAS  Google Scholar 

  7. Jurkevičius J, Mickevičius J, Kadys A et al (2016) Photoluminescence efficiency of BGaN epitaxial layers with high boron content. Phys B Condens Matter 492:23–26. https://doi.org/10.1016/j.physb.2016.03.033

    Article  CAS  Google Scholar 

  8. Mickevicius J, Andrulevicius M, Ligor O et al (2019) Type-II band alignment of low-boron-content BGaN/GaN heterostructures. J Phys D Appl Phys 52:325105. https://doi.org/10.1088/1361-6463/ab2337

    Article  CAS  Google Scholar 

  9. Shen J-X, Zdansky ME, Wickramaratne D, Van de Walle CG (2021) Thermodynamics of boron incorporation in BGaN. Phys Rev Mater 5:3–7. https://doi.org/10.1103/physrevmaterials.5.l030401

    Article  CAS  Google Scholar 

  10. Kudrawiec R, Hommel D (2020) Bandgap engineering in III-nitrides with boron and group v elements: toward applications in ultraviolet emitters. Appl Phys Rev 7:041314. https://doi.org/10.1063/5.0025371

    Article  CAS  Google Scholar 

  11. Orsal G, Maloufi N, Gautier S et al (2008) Effect of boron incorporation on growth behavior of BGaN/GaN by MOVPE. J Cryst Growth 310:5058–5062. https://doi.org/10.1016/j.jcrysgro.2008.08.024

    Article  CAS  Google Scholar 

  12. Polyakov AY, Shin M, Skowronski M et al (1997) Growth of GaBN ternary solutions by organometallic vapor phase epitaxy. J Electron Mater 26:237–242. https://doi.org/10.1007/s11664-997-0157-x

    Article  CAS  Google Scholar 

  13. Gunning BP, Moseley MW, Koleske DD et al (2017) Phase degradation in BxGa1−xN films grown at low temperature by metalorganic vapor phase epitaxy. J Cryst Growth 464:190–196. https://doi.org/10.1016/j.jcrysgro.2016.10.054

    Article  CAS  Google Scholar 

  14. Williamson TL, Weisse-Bernstein NR, Hoffbauer MA (2014) Growth of ternary wurtzite BAlN and BGaN by enable-MBE. Phys Status Solidi Curr Top Solid State Phys 11:462–465. https://doi.org/10.1002/pssc.201300741

    Article  CAS  Google Scholar 

  15. Teles LK, Furthmüller J, Scolfaro LMR et al (2002) Phase separation and gap bowing in zinc-blende InGaN, InAlN, BGaN, and BAlN alloy layers. Phys E: Low-Dimens Syst Nanostruct 13:1086–1089. https://doi.org/10.1016/S1386-9477(02)00309-0

    Article  CAS  Google Scholar 

  16. Ebara K, Mochizuki K, Inoue Y et al (2019) Impact of growth temperature on the structural properties of BGaN films grown by metal-organic vapor phase epitaxy using trimethylboron. Jpn J Appl Phys 58:SC1042. https://doi.org/10.7567/1347-4065/ab1395

    Article  CAS  Google Scholar 

  17. Wei CH, Xie ZY, Edgar JH et al (2000) MOCVD growth of GaBN on 6H-SiC (0001) substrates. J Electron Mater 29:452–456. https://doi.org/10.1007/s11664-000-0160-y

    Article  CAS  Google Scholar 

  18. Możdżyńska EB, Złotnik S, Ciepielewski P et al (2022) Insights on boron impact on structural characteristics in epitaxially grown BGaN. J Mater Sci 57:7265–7275. https://doi.org/10.1007/s10853-022-07085-z

    Article  CAS  Google Scholar 

  19. Zdanowicz E, Iida D, Pawlaczyk L et al (2020) Boron influence on bandgap and photoluminescence in BGaN grown on AlN. J Appl Phys 127:165703. https://doi.org/10.1063/1.5140413

    Article  CAS  Google Scholar 

  20. Schubert EF (2006) Light-emitting diodes, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  21. Turiansky ME, Shen JX, Wickramaratne D, Van de Walle CG (2019) First-principles study of bandgap bowing in BGaN alloys. J Appl Phys 126:095706. https://doi.org/10.1063/1.5111414

    Article  CAS  Google Scholar 

  22. Baghdadli T, Ould Saad Hamady S, Gautier S et al (2009) Electrical and structural characterizations of BGaN thin films grown by metal-organic vapor-phase epitaxy. Phys Status Solidi C 6:S2. https://doi.org/10.1002/pssc.200880896

    Article  Google Scholar 

  23. Gupta VK, Wamsley CC, Koch MW, Wicks GW (1999) Molecular beam epitaxy growth of boron-containing nitrides. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 17:1246–1248. https://doi.org/10.1116/1.590731

    Article  CAS  Google Scholar 

  24. Diallo IC, Demchenko DO (2016) Native point defects in GaN: a hybrid-functional study. Phys Rev Appl 6:1–18. https://doi.org/10.1103/PhysRevApplied.6.064002

    Article  CAS  Google Scholar 

  25. Lyons JL, Van De Walle CG (2017) Computationally predicted energies and properties of defects in GaN. NPJ Comput Mater 3:1–9. https://doi.org/10.1038/s41524-017-0014-2

    Article  CAS  Google Scholar 

  26. Reshchikov MA, Morkoç H (2005) Luminescence properties of defects in GaN. J Appl Phys 97(6):5–19. https://doi.org/10.1063/1.1868059

    Article  CAS  Google Scholar 

  27. Cui Y, Wright GW, Ma X et al (2001) DC photoconductivity study of semi-insulating Cd1-xZnxTe crystals. J Electron Mater 30:774–778. https://doi.org/10.1007/BF02665871

    Article  CAS  Google Scholar 

  28. Kamiński P, Kozłowski R, Miczuga M et al (2008) High-resolution photoinduced transient spectroscopy of defect centers in vanadium-doped semi-insulating SiC. J Mater Sci Mater Electron 19:224–228. https://doi.org/10.1007/s10854-008-9576-6

    Article  CAS  Google Scholar 

  29. Kamiński P, Kozłowski R, Miczuga M et al (2009) Compensating defect centres in semi-insulating 6H-SiC. Opto-Electron Rev 17:1–7. https://doi.org/10.2478/s11772-008-0052-x

    Article  CAS  Google Scholar 

  30. Narita T, Tokuda Y, Kogiso T et al (2018) The trap states in lightly Mg-doped GaN grown by MOVPE on a freestanding GaN substrate. J Appl Phys 123:161405. https://doi.org/10.1063/1.5010849

    Article  CAS  Google Scholar 

  31. Krupka J, Karcz W, Avdeyev SP et al (2014) Electrical properties of deuteron irradiated high resistivity silicon. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 325:107–114. https://doi.org/10.1016/j.nimb.2014.01.021

    Article  CAS  Google Scholar 

  32. Yu H, Caliskan D, Ozbay E (2006) Growth of high crystalline quality semi-insulating GaN layers for high electron mobility transistor applications. J Appl Phys 100:033501. https://doi.org/10.1063/1.2221520

    Article  CAS  Google Scholar 

  33. Fischer S, Wetzel C, Haller EE, Meyer BK (1995) On p-type doping in GaN-acceptor binding energies. Appl Phys Lett 67:1298–1300. https://doi.org/10.1063/1.114403

    Article  CAS  Google Scholar 

  34. Freitas JA (2020) Pervasive shallow donor impurities in GaN. ECS J Solid State Sci Technol 9:015009. https://doi.org/10.1149/2.0272001jss

    Article  CAS  Google Scholar 

  35. Darling RB (1993) Electrostatic and current transport properties of n+/semi- insulating GaAs junctions. J Appl Phys 74:4571–4589. https://doi.org/10.1063/1.354376

    Article  CAS  Google Scholar 

  36. Ishibashi A, Takeishi H, Mannoh M et al (1996) Residual impurities in GaN/Al2O3 grown by metalorganic vapor phase epitaxy. J Electron Mater 25:799–803. https://doi.org/10.1007/BF02666639

    Article  CAS  Google Scholar 

  37. Mycielski A, Kochanowska DM, Wardak A, Gościński K, Szot M, Dobrowolski W, Moszyński M (2022) Surface recombination and space-charge-limited photocurrent-voltage (PC-V) measurements in (Cd, Mn) Te samples-kinetics of photocurrent (PC). Sensors 22(8):2941

    Article  CAS  Google Scholar 

  38. Dehili S, Barakel D, Ottaviani L, Palais O (2021) Nickel and gold identification in p-type silicon through TDLS: a modeling study. Eur Phys J Appl Phys 94:10101. https://doi.org/10.1051/epjap/2021210015

    Article  CAS  Google Scholar 

  39. Alfieri G, Sundaramoorthy VK, Micheletto R (2018) Electrically active point defects in Mg implanted n-type GaN grown by metal-organic chemical vapor deposition. J Appl Phys 123:205303. https://doi.org/10.1063/1.5029254

    Article  CAS  Google Scholar 

  40. Belahsene S, Al SNA, Jameel D et al (2015) Analysis of deep level defects in GaN p-i-n diodes after beta particle irradiation. Electronics 4:1090–1100. https://doi.org/10.3390/electronics4041090

    Article  CAS  Google Scholar 

  41. Zhang Z, Arehart AR, Cinkilic E et al (2013) Impact of proton irradiation on deep level states in n-GaN. Appl Phys Lett 103:042102. https://doi.org/10.1063/1.4816423

    Article  CAS  Google Scholar 

  42. Duc TT, Pozina G, Son NT et al (2014) Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy. Appl Phys Lett 105:102103. https://doi.org/10.1063/1.4895390

    Article  CAS  Google Scholar 

  43. Polyakov AY, Lee IH, Smirnov NB et al (2011) Comparison of hole traps in n-GaN grown by hydride vapor phase epitaxy, metal organic chemical vapor deposition, and epitaxial lateral overgrowth. J Appl Phys 109:123701. https://doi.org/10.1063/1.3599894

    Article  CAS  Google Scholar 

  44. Kogiso T, Narita T, Yoshida H et al (2019) Characterization of hole traps in MOVPE-grown p-type GaN layers using low-frequency capacitance deep-level transient spectroscopy. Jpn J Appl Phys 58:SCCB36. https://doi.org/10.7567/1347-4065/ab0408

    Article  CAS  Google Scholar 

  45. Tokuda Y (2014) Traps in MOCVD n-GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy. In CS MANTECH 2014-2014 Int Conf Compd Semicond Manuf Technol 19–24

  46. Hierro A, Kwon D, Ringel SA et al (2000) Optically and thermally detected deep levels in n-type schottky and p+-n GaN diodes. Appl Phys Lett 76:3064–3066. https://doi.org/10.1063/1.126580

    Article  CAS  Google Scholar 

  47. Armstrong A, Arehart AR, Moran B et al (2004) Impact of carbon on trap states in n-type GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett 84:374–376. https://doi.org/10.1063/1.1643540

    Article  CAS  Google Scholar 

  48. Seager CH, Wright AF, Yu J, Götz W (2002) Role of carbon in GaN. J Appl Phys 92:6553–6560. https://doi.org/10.1063/1.1518794

    Article  CAS  Google Scholar 

  49. Zajac M, Gosk J, Grzanka E et al (2008) Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J Alloys Compd 456:324–338. https://doi.org/10.1016/j.jallcom.2007.02.046

    Article  CAS  Google Scholar 

  50. Limpijumnong S, Van de Walle CG (2004) Diffusivity of native defects in GaN. Phys Rev B 69:035207. https://doi.org/10.1103/PhysRevB.69.035207

    Article  CAS  Google Scholar 

  51. Gillen R, Robertson J (2013) A hybrid density functional view of native vacancies in gallium nitride. J Phys Condens Matter 25:405501. https://doi.org/10.1088/0953-8984/25/40/405501

    Article  CAS  Google Scholar 

  52. Chow KH, Watkins GD, Usui A, Mizuta M (2000) Detection of interstitial Ga in GaN. Phys Rev Lett 85:2761–2764. https://doi.org/10.1103/PhysRevLett.85.2761

    Article  CAS  Google Scholar 

  53. Yan Q, Janotti A, Scheffler M, Van De Walle CG (2012) Role of nitrogen vacancies in the luminescence of Mg-doped GaN. Appl Phys Lett 100:142110. https://doi.org/10.1063/1.3699009

    Article  CAS  Google Scholar 

  54. Harrison WA (2004) Elementary electronic structure, Revised. World Scientific, Singapore

    Book  Google Scholar 

  55. Lyons JL, Alkauskas A, Janotti A, Van de Walle CG (2015) First-principles theory of acceptors in nitride semiconductors. Phys Status Solidi B 252:900–908. https://doi.org/10.1002/pssb.201552062

    Article  CAS  Google Scholar 

  56. Miceli G, Pasquarello A (2015) Energetics of native point defects in GaN: a density-functional study. Microelectron Eng 147:51–54. https://doi.org/10.1016/j.mee.2015.04.015

    Article  CAS  Google Scholar 

  57. Neugebauer J, Van de Walle CG (1996) Gallium vacancies and the yellow luminescence in GaN. Appl Phys Lett 69:503–505. https://doi.org/10.1063/1.117767

    Article  Google Scholar 

  58. Jiang FY, Zhang JL, Xu LQ et al (2019) Efficient InGaN-based yellow-light-emitting diodes. Photonics Res 7:144–148. https://doi.org/10.1364/PRJ.7.000144

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported from the Grant No. 4/Ł-IMIF/CŁ/2021 funded by The Łukasiewicz Centre. Authors would like to thanks Jacek Nizel for performing the epitaxial growth processes.

Funding

This study was funded by The Łukasiewicz Centre (Grant Number 4/Ł-IMIF/CŁ/2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewelina B. Możdżyńska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Możdżyńska, E.B., Kamiński, P., Kozłowski, R. et al. Effect of the growth temperature on the formation of deep-level defects and optical properties of epitaxial BGaN. J Mater Sci 57, 17347–17362 (2022). https://doi.org/10.1007/s10853-022-07725-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07725-4

Navigation