Skip to main content
Log in

A model of how the thermal ionization energy of impurities in semiconductors depends on their concentration and compensation

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

An electrostatic model is derived for the dependence of the thermal ionization energy of hydrogenic impurities E 1 on their concentration N and degree of compensation K, with allowance for the screening of ions by electrons (holes) that hop from impurity to impurity. It is shown that the change in E 1 with increasing N and K is connected with broadening of the impurity band and its shift toward the valence (v) band for acceptors and toward the conduction band (c) for donors. The shift in the impurity band is explained by a decrease in the affinity energy of an ionized acceptor for a hole (or a donor for an electron) due to screening of the ions. The impurity ion distribution density over the crystal is assumed to be Poisson-like, while its energy distribution is normal. The electron densities of states in the v-and c-bands are assumed to be those of the undoped crystal for the temperature interval in which E 1 is determined. The values of E 1(N,K) calculated using the expressions given here coincide with known experimental data for transmutation-doped Ge crystals. A description is given of the dependence on N and K of the thermal ionization energy of Zn atoms in p-type Ge as they change from a charge state (−1) to (−2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ya. Shik, Fiz. Tekh. Poluprovodn. 17, 2220 (1983) [Sov. Phys. Semicond. 17, 1422 (1983)].

    Google Scholar 

  2. J. M. Ziman, Models of Disorder [London-New York-Melbourne, Cambridge University Press (1979), ch. 13, p. 574; Mir, Moscow, 1982].

    Google Scholar 

  3. N. V. Lien and B. I. Shklovskii, Fiz. Tekh. Poluprovodn. 13, 1763 (1979) [Sov. Phys. Semicond. 13, 1025 (1979)].

    Google Scholar 

  4. A. A. Uzakov and A. L. Efros, Fiz. Tekh. Poluprovodn. 21, 922 (1987) [Sov. Phys. Semicond. 21, 562 (1987)].

    Google Scholar 

  5. J. Monecke, W. Siegel, E. Ziegler, and G. Kuhnel, Phys. Status Solidi B 103, 269 (1981).

    Google Scholar 

  6. V. L. Bonch-Bruevich, Izv. vuzov. Fizika 28, 98 (1985).

    Google Scholar 

  7. D. Schechter, J. Appl. Phys. 61, 591 (1987).

    Article  ADS  Google Scholar 

  8. A. G. Zabrodskii and M. P. Timofeev, Fiz. Tekh. Poluprovodn. 21, 2217 (1987) [Sov. Phys. Semicond. 21, 1344 (1987)].

    Google Scholar 

  9. N. A. Poklonskii and A. I. Syaglo, Zh. Prikl. Spektrosk. 64, 367 (1997).

    Google Scholar 

  10. N. A. Poklonskii, A. I. Syaglo, and F. N. Borovik, Fiz. Tekh. Poluprovodn. 30, 1767 (1996) [Semiconductors 30, 924 (1996)].

    Google Scholar 

  11. N. A. Poklonski, V. F. Stelmakh, V. D. Tkachev, and S. V. Voitikov, Phys. Status Solidi B 88, K165 (1978).

    Google Scholar 

  12. S. A. Maiorov, A. N. Tkachev, and S. I. Yakovlenko, Izv. vuzov. Fizika 35, 10 (1992).

    Google Scholar 

  13. D. ter Haar, in Problems in Thermodynamics and Statistical Physics, edited by P. T. Landsberg [London, Pion (1971); Mir, Moscow (1974), 380 pp.].

    Google Scholar 

  14. N. A. Poklonskii, Izv. vuzov. Fizika 27, 41 (1984).

    Google Scholar 

  15. M. I. Chibisov, Zh. Éksp. Teor. Fiz. 93, 1671 (1987) [Sov. Phys. JETP 66, 954 (1987)].

    ADS  Google Scholar 

  16. V. S. Marchenko, Zh. Éksp. Teor. Fiz. 94, 46 (1988) [Sov. Phys. JETP 67, 1111 (1988)].

    ADS  Google Scholar 

  17. A. G. Andreev, V. V. Voronkov, G. I. Voronkova, A. G. Zabrodskii, and E. A. Petrova, Fiz. Tekh. Poluprovodn. 29, 2218 (1995) [Semiconductors 29, 1157 (1995)].

    Google Scholar 

  18. L. V. Govor, V. P. Dobrego, and N. A. Poklonskiii, Fiz. Tekh. Poluprovodn. 18, 2075 (1984) [Sov. Phys. Semicond. 18, 1292 (1984)].

    Google Scholar 

  19. T. G. Castnerr, N. K. Lee, H. S. Tan, L. Moberly, and O. Symko, J. Low Temp. Phys. 38, 447 (1980).

    Google Scholar 

  20. V. N. Abakumov, V. I. Perel’, and I. N. Yassievich, Fiz. Tekh. Poluprovodn. 12, 3 (1978) [Sov. Phys. Semicond. 12, 1 (1978)].

    Google Scholar 

  21. A. G. Beda, F. M. Vorobkalo, V. V. Vainberg, L. I. Zarubin, I. M. Libeznik, and V. V. Ovcharov, Fiz. Tekh. Poluprovodn. 22, 2065 (1988) [Sov. Phys. Semicond. 22, 1308 (1988)].

    Google Scholar 

  22. T. M. Lifshits, Instrum. Exp. Tech. 1, 10 (1993).

    Google Scholar 

  23. Semiconductors: Group IV Elements and III–V Compounds, edited by O. Madelung (Springer-Verlag, Berlin-Heidelberg, 1991).

    Google Scholar 

  24. A. N. Ionov, M. N. Matveev, I. S. Shlimak, F. M. Vorobkalo, L. I. Zarubin, and I. Yu. Nemish, Fiz. Tekh. Poluprovodn. 25, 413 (1991) [Sov. Phys. Semicond. 25, 251 (1991)].

    Google Scholar 

  25. A. N. Ionov, M. N. Matveev, and D. V. Shmikk, Zh. Tekh. Fiz. 59, 169 (1989) [Sov. Phys. Tech. Phys. 34, 351 (1989)].

    Google Scholar 

  26. E. M. Gershenzon, L. B. Litvak-Gorskaya, and G. Ya. Lugovaya, Fiz. Tekh. Poluprovodn. 15, 1284 (1981) [Sov. Phys. Semicond. 15, 742 (1981)].

    Google Scholar 

  27. T. M. Burbaev, V. A. Kurbatov, and N. A. Penin, Fiz. Tekh. Poluprovodn. 15, 1486 (1981) [Sov. Phys. Semicond. 15, 861 (1981)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 33, 415–419 (April 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poklonskii, N.A., Syaglo, A.I. & Biskupski, G. A model of how the thermal ionization energy of impurities in semiconductors depends on their concentration and compensation. Semiconductors 33, 402–406 (1999). https://doi.org/10.1134/1.1187702

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187702

Keywords

Navigation