Skip to main content
Log in

Short-wavelength photoluminescence of SiO2 layers implanted with high doses of Si+, Ge+, and Ar+ ions

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The short-wavelength (400–700 nm) photoluminescence (PL) spectra of SiO2 layers implanted with Si+, Ge+, and Ar+ ions in the dose range 3.2×1016–1.2×1017 cm−2 are compared. After Ar+ implantation an extremely weak luminescence, which vanishes completely after annealing for 30 min at 400 °C or 20 ms at 1050 °C, was observed. After implantation of group-IV elements the luminescence intensities were 1 to 2 orders of magnitude higher, and the luminescence remained not only with annealings but it could also increase. The dose and heating dependences of the luminescence show that it is due to the formation of impurity clusters and this process is more likely to be of a percolation than a diffusion character. For both group-IV impurities an intense blue band and a weaker band in the orange part of the spectrum were observed immediately after implantation. The ratio of the excitation and emission energies of the blue luminescence is characteristic of oxygen vacancies in SiO2; its properties are determined by the direct interaction of group-IV atoms. On this basis it is believed that the centers of blue PL are chains of Si (or Ge) atoms embedded in SiO2. The orange luminescence remained after annealings only in the case of Si+ implantation. This is attributed directly to the nonphase precipitates of Si in the form of strongly developed nanometer-size clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tamura, M. Ruckschloss, T. Wirschem, and S. Veprek, Appl. Phys. Lett. 65, 1357 (1994).

    Article  Google Scholar 

  2. P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, Appl. Phys. Lett. 66, 851 (1995).

    Article  ADS  Google Scholar 

  3. J. G. Zhu, C. W. White, J. D. Budai, S. P. Withraw, and Y. Chen, J. Appl. Phys. 78, 4386 (1995).

    ADS  Google Scholar 

  4. Q. Zhang, S. C. Bayliss, and D. A. Hutt, Appl. Phys. Lett. 66, 1977 (1995).

    ADS  Google Scholar 

  5. H. Morisaki, H. Hashimoto, F. W. Ping, H. Nozava, and H. Ono, J. Appl. Phys. 74, 2977 (1993).

    Article  ADS  Google Scholar 

  6. T. Shimizu-Iwayama, Y. Terao, A. Kamiya, M. Takeda, S. Nakao, and K. Saitoh, Nucl. Instrum. Methods Phys. Res. B 112, 214 (1996).

    Article  ADS  Google Scholar 

  7. L.-S. Liao, X.-M. Bao, N.-S. Li, X.-Q. Zheng, and N.-B. Min, J. Lumin. 68, 199 (1996).

    Google Scholar 

  8. A. K. Dutta, Appl. Phys. Lett. 68, 1189 (1996).

    Article  ADS  Google Scholar 

  9. K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, Appl. Phys. Lett. 68, 2511 (1996).

    Article  ADS  Google Scholar 

  10. Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, Appl. Phys. Lett. 61, 2187 (1992).

    ADS  Google Scholar 

  11. H. M. Cheong, W. Paul, S. P. Withrow, J. G. Zhu, J. D. Budai, S. W. White, and D. M. Hembree, Appl. Phys. Lett. 68, 87 (1996).

    Article  ADS  Google Scholar 

  12. W. Skorupa, R. A. Yankov, L. Rebohle, H. Frob, T. Bohme, K. Leo, I. E. Tyschenko, and G. A. Kachurin, Nucl. Instrum. Methods Phys. Res. B 119, 106 (1996).

    ADS  Google Scholar 

  13. G. A. Kachurin, I. E. Tyschenko, K. S. Zhuravlev, N. A. Pazdnikov, V. A. Volodin, A. K. Gutakovsky, A. F. Leier, W. Skorupa, and R. A. Yankov, Nucl. Instrum. Methods Phys. Res. B 122, 571 (1997).

    Article  ADS  Google Scholar 

  14. R. Tohmon, Y. Shimogaichi, H. Mizuno, and Y. Ohki, Phys. Rev. Lett. 62, 1388 (1989).

    Article  ADS  Google Scholar 

  15. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, Phys. Rev. B 45, 586 (1992).

    Article  ADS  Google Scholar 

  16. H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, J. Appl. Phys. 80, 3513 (1996).

    ADS  Google Scholar 

  17. A. J. Kenyon, P. F. Towoga, C. W. Pitt, and G. Rehm, J. Appl. Phys. 79, 9291 (1996).

    Article  ADS  Google Scholar 

  18. G. Ghislotti, B. Nielsen, P. Asoka-Kumar, K. G. Lynn, A. Gambhir, L. E. Di Mauro, and C. E. Bottani, J. Appl. Phys. 79, 8660 (1996).

    Article  ADS  Google Scholar 

  19. S. Bota, B. Garrido, J. R. Morante, A. Baraban, and P. P. Konorov, Solid-State Electron. 34, 355 (1996).

    Google Scholar 

  20. L. A. Nesbit, Appl. Phys. Lett. 46, 38 (1985).

    Article  ADS  Google Scholar 

  21. H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, Phys. Rev. B 46, 11 445 (1982).

    Google Scholar 

  22. M. Gallagher and U. Osterberg, Appl. Phys. Lett. 63, 2987 (1993).

    Article  ADS  Google Scholar 

  23. V. B. Sulimov, V. O. Sokolov, J. Non-Cryst. Solids 191, 260 (1995).

    Article  Google Scholar 

  24. A. N. Goldstein, Appl. Phys. A 62, 33 (1996).

    Article  ADS  Google Scholar 

  25. G. A. Kachurin, I. E. Tyschenko, V. Skorupa, R. A. Yankov, K. S. Zhuravlev, N. A. Pazdnikov, V. A. Volodin, A. K. Gutakovskii, and A. F. Leier, Fiz. Tekh. Poluprovodn. 31, 730 (1997) [Semiconductors 31, 627 (1997)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 32, 439–444 (April 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachurin, G.A., Tyschenko, I.E., Rebohle, L. et al. Short-wavelength photoluminescence of SiO2 layers implanted with high doses of Si+, Ge+, and Ar+ ions. Semiconductors 32, 392–396 (1998). https://doi.org/10.1134/1.1187417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187417

Keywords

Navigation