Skip to main content
Log in

Local deformation and the structure of the Stark splitting of rare-earth ions

  • Semiconductors. Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A model for describing the relaxation of ligand ions close to a defect when impurity ions are introduced into a crystal is proposed and verified. The approach assumes that ionic displacements into new equilibrium positions can be regarded as fundamental parameters of impurity crystals that can be determined from experimental data concerning the energy structure of the impurity ion. Direct calculations for rare-earth impurity ions using crystal-field theory showed that the energy spectrum of these ions strongly depends on the equilibrium positions of the nearest matrix ions surrounding them. The results of the calculations are compared with the available experimental data. The parameters of the theory are determined. The possibility of applying this approach to the study of other systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Kulagin and D. T. Sviridov, Methods of Calculating the Electronic Structure of Free and Impurity Ions [in Russian] (Nauka, Moscow, 1986).

    Google Scholar 

  2. E. F. Kustov, G. A. Bondurkin, É. N. Murav’ev, and V. P. Orlovskii, Electronic Spectra of Compounds of the Rare-Earth Elements [in Russian] (Nauka, Moscow, 1981).

    Google Scholar 

  3. B. Z. Malkin, in Spectroscopy of Solids Containing Rare Earth Ions, Vol. 4, edited by A. A. Kaplyanskii and R. M. Macfarlane (Elsevier Sci. Publ., 1987), p. 15.

  4. A. A. Kornienko, “Differentiated influence of excited configurations on the multiplets of the rare-earth ions,” Author’s abstract of dissertation for the doctorate of physicomathematical sciences, Institute of Molecular and Atomic Physics, Academy of Sciences of Belarus, Minsk, 1997.

    Google Scholar 

  5. A. A. Kaminskii and B. M. Antipenko, Multilevel Functional Schemes of Crystal Lasers [in Russian] (Nauka, Moscow, 1989).

    Google Scholar 

  6. A. B. Roitsin, Fiz. Tekh. Poluprovodn. 8, 3 (1974) [Sov. Phys. Semicond. 8, 1 (1974)].

    Google Scholar 

  7. I. B. Bersuker, Electronic Structure and Properties of Coordination Compounds [in Russian] (Khimiya, Leningrad, 1986).

    Google Scholar 

  8. A. A. Klimov, A. B. Roitsin, M. M. Chumachkova, and L. V. Artamonov, Ukr. Fiz. Zh. 40, 866 (1995).

    Google Scholar 

  9. B. G. Dick and T. P. Das, Phys. Rev. 127, 1053 (1962).

    Article  ADS  Google Scholar 

  10. T. P. Das, Phys. Rev. A 140, 1957 (1965).

    ADS  Google Scholar 

  11. C. Fainstein, M. Tovar, and C. Ramos, Phys. Rev. B 25, 3039 (1982).

    Article  ADS  Google Scholar 

  12. M. Tovar, C. Ramos, and C. Fainstein, Phys. Rev. B 28, 4813 (1983).

    Article  ADS  Google Scholar 

  13. M. P. Davydova and A. L. Stolov, Fiz. Tverd. Tela 17, 329 (1975) [Sov. Phys. Solid State 17, 203 (1975)].

    Google Scholar 

  14. Z. I. Ivanenko and B. Z. Malkin, Fiz. Tverd. Tela 11, 1859 (1969) [Sov. Phys. Solid State 11, 1498 (1970)].

    Google Scholar 

  15. M. Schefler, J. P. Vigneron, and G. B. Bachelet, Phys. Rev. B 31, 6541 (1985).

    ADS  Google Scholar 

  16. F. Bechstedt and W. A. Harrison, Phys. Rev. B 39, 5041 (1989).

    Article  ADS  Google Scholar 

  17. A. M. Tkachuk, in Spectroscopy of Crystals [in Russian], edited by A. A. Kaplyanskii (Nauka, Leningrad, 1989).

    Google Scholar 

  18. V. Ranon J. Phys. Chem. Solids 25, 1205 (1964).

    Google Scholar 

  19. C. D. Cleven, S. H. Lee, and J. C. Wright, Phys. Rev. B 44, 23 (1991).

    Article  ADS  Google Scholar 

  20. I. B. Aizenberg, B. Z. Malkin, and A. L. Stolov, Fiz. Tverd. Tela 13, 2566 (1971) [Sov. Phys. Solid State 13, 2155 (1972)].

    Google Scholar 

  21. A. A. Kaplyanskii and A. I. Ryskin, in Spectroscopy of Crystals [in Russian], edited by A. A. Kaplyanskii (Nauka, Leningrad, 1983).

    Google Scholar 

  22. K. Lesniak, Acta Phys. Pol. A 75, No. 1, 169 (1989).

    Google Scholar 

  23. R. Boyn, Phys. Status Solidi B 148, 11 (1988).

    Google Scholar 

  24. W. F. Krupke, Phys. Rev. 1451, 325 (1966).

    ADS  Google Scholar 

  25. N. V. Eremin, in Spectroscopy of Crystals [in Russian], edited by A. A. Kaplyanskii (Nauka, Leningrad, 1989).

    Google Scholar 

  26. A. B. Roitsin, Some Applications of the Theory of Symmetry in Microwave Spectroscopy [in Russian] (Nauk. Dumka, Kiev, 1973).

    Google Scholar 

  27. A. B. Roitsin and L. A. Firshtein, Theor. Exp. Chem. 2, 747 (1966).

    Article  Google Scholar 

  28. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976; Fizmatgiz, Moscow, 1978).

    Google Scholar 

  29. Fundamental Properties of Inorganic Fluorides. A Handbook [in Russian], edited by N. P. Galkin, (Atomizdat, Moscow, 1976).

    Google Scholar 

  30. B. M. Tissue and J. C. Wright, Phys. Rev. B 36, 9781 (1987).

    Article  ADS  Google Scholar 

  31. K. N. R. Taylor and M. Darby, Physics of Rare-Earth Compounds (Chapman & Hall, London, 1972; Mir, Moscow, 1974); N. V. Starostin and G. A. Sizova, Spectroscopy of Crystals [in Russian] (Nauka, Moscow, 1985), p. 70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 41, 1194–1199 (July 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chumachkova, M.M., Roitsin, A.B. Local deformation and the structure of the Stark splitting of rare-earth ions. Phys. Solid State 41, 1088–1092 (1999). https://doi.org/10.1134/1.1130942

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130942

Keywords

Navigation