Skip to main content
Log in

Spatial distribution, build-up, and annealing of radiation defects in silicon implanted by high-energy krypton and xenon ions

  • Defects. Dislocations. Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

An x-ray diffraction study of defect formation in silicon irradiated by Kr+ (210 MeV, 8×1012−3×1014 cm−2) and Xe+ (5.6 BeV, 5×1011−5×1013 cm−2) ions is reported. It has been established that irradiation produces a defect structure in the bulk of silicon, which consists of ion tracks whose density of material is lower than that of the host. The specific features of defect formation are discussed taking into account the channeling of part of the ions along the previously formed tracks and the dominant role of electron losses suffered by the high-energy ions. It is shown that the efficiency of incorporation of stable defects by irradiation with high-energy ions is lower than that reached by implanting medium-mass ions with energies of a few hundred keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Zhevno, V. V. Sidorik, and V. D. Tkachev, Dokl. Akad. Nauk BSSR 20, 409 (1976).

    Google Scholar 

  2. O. J. Araika, A. R. Chelyadinskii, V. A. Dravin, Yu. R. Suprun-Belevich, and V. P. Tolstykh, Nucl. Instrum. Methods Phys. Res. B 73, 503 (1993).

    Article  ADS  Google Scholar 

  3. N. I. Bereonov, V. F. Stelmakh, and A. R. Chelyadinskii, Phys. Status Solidi A 78, K121 (1983).

    Google Scholar 

  4. W. Jung and G. S. Newell, Phys. Rev. 132, 648 (1963).

    Article  ADS  Google Scholar 

  5. V. A. Botvin, Yu. V. Gorelkinskii, V. O. Sigle, and M. A. Gubisov, Fiz. Tekh. Poluprovodn. 6, 1683 (1972) [Sov. Phys. Semicond. 6, 1453 (1972)].

    Google Scholar 

  6. Y. H. Lee, N. N. Gerasimenko, and J. W. Corbett, Phys. Rev. B 14, 4506 (1976).

    ADS  Google Scholar 

  7. K. L. Brower, Phys. Rev. B 14, 872 (1976).

    Article  ADS  Google Scholar 

  8. M. Jadan, N. I. Berezhnov, and A. R. Chelyadinskii, Phys. Status Solidi B 189, K1 (1995).

    Google Scholar 

  9. L. J. Cheng and M. L. Swanson, J. Appl. Phys. 41, 2627 (1970).

    Google Scholar 

  10. V. A. Martinovich, A. R. Chelyadinskii, V. S. Varichenko, N. M. Penina, E. N. Drozdova, A. M. Zaitsev, and W. R. Fahrner, in Abstracts Conference of the German Physics Society (Regensburg, 1996), p. 1547.

  11. V. S. Varichenko, A. M. Zaitsev, N. M. Kazutchits, A. R. Chelyadinskii, N. M. Penina, V. A. Martinovich, Ya. I. Latushko, and W. R. Fahrner, Nucl. Instrum. Methods Phys. Res. B 107, 268 (1996).

    Article  ADS  Google Scholar 

  12. J. F. Gibbons, Proc. IEEE 60, 1062 (1972).

    Google Scholar 

  13. P. Sigmund, Appl. Phys. Lett. 14, 114 (1969).

    Article  Google Scholar 

  14. G. D. Watkins, in Lattice Defects in Semiconductors (Inst. of Phys., London, 1975), p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 40, 1627–1630 (September 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chelyadinskii, A.R., Varichenko, V.S. & Zaitsev, A.M. Spatial distribution, build-up, and annealing of radiation defects in silicon implanted by high-energy krypton and xenon ions. Phys. Solid State 40, 1478–1481 (1998). https://doi.org/10.1134/1.1130580

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130580

Keywords

Navigation