Skip to main content
Log in

A review of transesterification from low-grade feedstocks for biodiesel production with supercritical methanol

  • Various Technologies
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Biodiesel produced from renewable energy sources has been widely researched by different countries as a potential and ecologically acceptable substitute for the conventional fuel. Considering the increasing material cost and the human consumption of edible vegetable oils, low-grade raw materials involving non-edible oils, waste cooking oils, soapstocks and animal fats have drawn much interest for biodiesel production. This paper reviews the transesterification of low-grade feedstocks to convert into biodiesel with supercritical fluid technology that is more efficient and eco-friendly. This technonogy leads to simpler separation and purification steps compared with the conventional catalytic methods. The supercritical process is insensitive to free fatty acids or water in feedstocks and requires relatively short reaction time with high ester conversion yield. Besides, potential intensified technology has also been provided for reducing the biodiesel production cost to expect an early industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukuda, H., Kondo, A., and Noda, H., J. Biosci. Bioeng., 2001, vol. 92, pp. 405–416.

    Article  CAS  Google Scholar 

  2. Canakci, M. and Sanli, H., J. Ind. Microbiol. Biotechnol., 2008, vol. 35, no. 5, pp. 431–441.

    Article  CAS  Google Scholar 

  3. Chisti, Y., Biotechnol. Adv., 2007, vol. 25, no. 3, pp. 294–306.

    Article  CAS  Google Scholar 

  4. Yusuf, N.N.a.N., Kamarudin, S.K., and Yaakub, Z., Energ. Conv. Manage., 2011, vol. 52, pp. 2741–2751.

    Article  CAS  Google Scholar 

  5. Maddikeri, G.L., Pandit, A.B., and Gogate, P.R., Ind. Eng. Chem. Res., 2012, vol. 51, no. 45, pp. 14610–14628.

    Article  CAS  Google Scholar 

  6. Ong, L.K., Kurniawan, A., Suwandi, A.C., Lin, C.X., Zhao, X.S., and Ismadji, S., J. Supercrit. Fluid., 2013, vol. 75, pp. 11–20.

    Article  CAS  Google Scholar 

  7. Demirbas, A., Energ. Conv. Manage., 2009, vol. 50, no. 1, pp. 14–34.

    Article  CAS  Google Scholar 

  8. Lam, M.K., Lee, K.T., and Mohamed, A.R., Biotechnol. Adv., 2010, vol. 28, no. 4, pp. 500–518.

    Article  CAS  Google Scholar 

  9. Thiruvengadaravi, K. V., Nandagopal, J., Baskaralingam, P., Sathya Selva Bala, V., and Sivanesan, S., Fuel, 2012, vol. 98, pp. 1–4.

    Article  CAS  Google Scholar 

  10. Alhassan, F.H., Yunus, R., Rashid, U., Sirat, K., Islam, A., Lee, H.V., and Taufiq-Yap, Y.H., Appl. Catal. A-Gen., 2013, vol. 456, pp. 182–187.

    Article  CAS  Google Scholar 

  11. Uzun, B.B., Kılıç, M., Özbay, N., Pütün, A.E., and Pütün, E., Energy, 2012, vol. 44, no. 1, pp. 347–351.

    Article  CAS  Google Scholar 

  12. Al-Hamamre, Z. and Yamin, J., Energ. Conv. Manage. 2014, vol. 79, pp. 246–254.

    Article  CAS  Google Scholar 

  13. Primata, M., Seo, Y.C., and Chu, Y.H., J Mater. Cycles Waste, 2013, vol. 15, no. 2, pp. 223–228.

    Article  CAS  Google Scholar 

  14. Hama, S., Yoshida, A., Tamadani, N., Noda, H., and Kondo, A., Bioresour. Technol., 2013, vol. 135, pp. 417–421.

    Article  CAS  Google Scholar 

  15. Gharat, N. and Rathod, V.K., Ultrason Sonochem, 2013, vol. 20, no. 3, pp. 900–905.

    Article  CAS  Google Scholar 

  16. Aarthy, M., Saravanan, P., Gowthaman, M.K., Rose, C., and Kamini, N.R., Chem. Eng. Res. Des., 2014.

    Google Scholar 

  17. Demirbas, A., Energ. Conv. Manage., 2009, vol. 50, no. 4, pp. 923–927.

    Article  CAS  Google Scholar 

  18. Gog, A., Roman, M., Toşa, M., Paizs, C., and Irimie, F.D., Renew. Energ., 2012, vol. 39, no. 1, pp. 10–16.

    Article  CAS  Google Scholar 

  19. Savage, P.E., Gopalan, S., Mizan, T.I., Martino, C.J., and Brock, E.E., AIChE J., 1995, vol. 41, no. 7, pp. 1723–1778.

    Article  CAS  Google Scholar 

  20. Anikeev, V.I. and Yermakova, A., Russ. J. Appl. Chem., 2011, vol. 84, no. 1, pp. 88–94.

    Article  CAS  Google Scholar 

  21. Demirbas, A., Energ. Conv. Manage., 2008, vol. 49, no. 1, pp. 125–130.

    Article  CAS  Google Scholar 

  22. Zeng, D., Li, R., Jin, T., and Fang, T., Ind. Eng. Chem. Res., 2014.

    Google Scholar 

  23. Tan, K.T., Gui, M.M., Lee, K.T., and Mohamed, A.R., J. Supercrit. Fluid., 2010, vol. 53, pp. 82–87.

    Article  CAS  Google Scholar 

  24. Chalkley and Philip, A., Diesel Engines for Land and Marine Work, New York, USA: D. Van Nostrand., 1912, 2nd ed.

    Google Scholar 

  25. Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H., and Mekhilef, S., Renewable and Sustainable Energy Reviews, 2012, vol. 16, no. 4, pp. 2070–2093.

    Article  Google Scholar 

  26. Singh, S. P. and Singh, D., Renewable and Sustainable Energy Reviews, 2010, vol. 14, no. 1, pp. 200–216.

    Article  CAS  Google Scholar 

  27. Canakci, M., Bioresour. Technol., 2007, vol. 98, no. 1, pp. 183–190.

    Article  CAS  Google Scholar 

  28. Pinzi, S., Leiva, D., López-García, I., Redel-Macías, M.D., and Dorado, M.P., Biofuels, Bioprod. Biorefin., 2014, vol. 8, no. 1, pp. 126–143.

    Article  CAS  Google Scholar 

  29. Samniang, A., Tipachan, C., and Kajorncheappunngam, S., Renewable Energy, 2014, vol. 68, pp. 351–355.

    Article  CAS  Google Scholar 

  30. Lapuerta, M., Rodriguez-Fernandez, J., and Agudelo, J.R., Bioresour. Technol., 2008, vol. 99, no. 4, pp. 731–740.

    Article  CAS  Google Scholar 

  31. Talebian-Kiakalaieh, A., Amin, N.A.S., and Mazaheri, H., Appl. Energ., 2013, vol. 104, pp. 683–710.

    Article  CAS  Google Scholar 

  32. Haas, M.J., Fuel Process. Technol., 2005, vol. 86, no. 10, pp. 1087–1096.

    Article  CAS  Google Scholar 

  33. Banković-Ilić, I.B., Stojković, I.J., Stamenković, O.S., Veljkovic, V.B., and Hung, Y.-T., Renewable Sustainable Energy Rev., 2014, vol. 32, pp. 238–254.

    Article  Google Scholar 

  34. Gürü, M., Artukoğlu, B.D., Keskin, A., and Koca, A., Energy Convers. Manage., 2009, vol. 50, no. 3, pp. 498–502.

    Article  Google Scholar 

  35. Warabi, Y., Kusdiana, D., and Saka, S., Bioresour. Technol., 2004, vol. 91, pp. 283–287.

    Article  CAS  Google Scholar 

  36. Jeong, G.T., Yang, H.S., and Park, D.H., Bioresour. Technol., 2009, vol. 100, no. 1, pp. 25–30.

    Article  CAS  Google Scholar 

  37. Ghoreishi, S.M. and Moein, P., J. Supercrit. Fluid., 2013, vol. 76, pp. 24–31.

    Article  CAS  Google Scholar 

  38. Shin, H.Y., Lee, S.H., Ryu, J.H., and Bae, S.Y., J. Supercrit. Fluid., 2012, vol. 61, pp. 134–138.

    CAS  Google Scholar 

  39. Marulanda, V.F., Anitescu, G., and Tavlarides, L.L., J. Supercrit. Fluid., 2010, vol. 54, no. 1, pp. 53–60.

    Article  CAS  Google Scholar 

  40. Canakci, M. and Van Gerpen, J., Trans. ASAE, 2001, vol. 6, no. 44, pp. 1429–1436.

    Google Scholar 

  41. Goering, C.E., Schwab, A.W., Dangherty, M.J., Pryde, E.H., and Heakin, A.J., Trans. ASAE, 1982, vol. 25, no. 6, pp. 1472–1477.

    Article  CAS  Google Scholar 

  42. Kafuku, G., Tan, K.T., Lee, K.T., and Mbarawa, M., Chem. Eng. Technol., 2011, vol. 34, no. 11, pp. 1827–1834.

    Article  CAS  Google Scholar 

  43. Darnoko, D. and Cheryan, M., J. Am. Oil Chem. Soc., 2000, vol. 77, no. 12, pp. 1263–1267.

    Article  CAS  Google Scholar 

  44. Saka, S. and Kusdiana, D., Fuel, 2001, vol. 80, no. 2, pp. 225–231.

    Article  CAS  Google Scholar 

  45. Kusdiana, D. and Saka, S., Fuel., 2001, vol. 80, pp. 693–698.

    Article  CAS  Google Scholar 

  46. Kusdiana, D. and Saka, S., J. Chem. Eng. Jpn., 2001, vol. 34, no. 3, pp. 383–387.

    Article  CAS  Google Scholar 

  47. Tan, K.T., Lee, K.T., and Mohamed, A.R., Energy, 2011, vol. 36, no. 4, pp. 2085–2088.

    Article  CAS  Google Scholar 

  48. Tsai, Y.T., Lin, H.M., and Lee, M.J., Bioresour. Technol., 2013, vol. 145, pp. 362–369.

    Article  CAS  Google Scholar 

  49. Niza, N.M., Tan, K.T., Ahmad, Z., and Lee, K.T., Chem. Pap., 2011, vol. 65, no. 5, pp. 721–729.

    Article  CAS  Google Scholar 

  50. Ong, L.K., Effendi, C., Kurniawan, A., Lin, C.X., Zhao, X.S., and Ismadji, S., Energy, 2013, vol. 57, pp. 615–623.

    Article  CAS  Google Scholar 

  51. Maçaira, J., Santana, A., Costa, A., Ramirez, E., and Larrayoz, M.A., Ind. Eng. Chem. Res., 2014, vol. 53, no. 10, pp. 3985–3995.

    Article  Google Scholar 

  52. Sawangkeaw, R., Bunyakiat, K., and Ngamprasertsith, S., J. Supercrit. Fluid., 2010, vol. 55, no. 1, pp. 1–13.

    Article  CAS  Google Scholar 

  53. Kusdiana, D. and Saka, S., Appl. Biochem. Biotechnol., 2004, vol. 113, pp. 781–791.

    Article  Google Scholar 

  54. Minami, E. and Saka, S., Fuel, 2006, vol. 85, no. 17–18, pp. 2479–2483.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Fang.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, D., Li, R., Wang, B. et al. A review of transesterification from low-grade feedstocks for biodiesel production with supercritical methanol. Russ J Appl Chem 87, 1176–1183 (2014). https://doi.org/10.1134/S107042721408028X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721408028X

Keywords

Navigation