Skip to main content
Log in

Short-Lived Electron Excitations in FeTe1 –xSex as Revealed by Microwave Absorption

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Fe1 +yTe1 –xSex single crystals with the various Se/Te ratios were studied by the microwave absorption and direct current resistivity measurements. The comparison of the microwave absorption data and the resistivity versus temperature made it possible to separate the contributions of two types of spin fluctuations. One of them is due to the anisotropic magnetic (nematic) fluctuations. It is observed over the wide temperature range from ~30 to 150 or 200 K. In FeSe it has the maximum close to the structural transition temperature. Another MWA anomaly is located in the narrow temperature range above the superconducting transition. It is likely due to the antiferromagnetic fluctuations. Annealing of a sample at the temperature around 300°C in the oxygen atmosphere made it possible to exclude the effect of excess iron on the observed anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. E. Böhmer and A. Kreisel, J. Phys.: Condens. Matter 30, 023001 (2018).

    ADS  Google Scholar 

  2. Chih-Wei Luo, Po Chung Cheng, Shun-Hung Wang, et al., Quantum Mater. 2, 32 (2017).

  3. T. Imai, K. Ahilan, F. L. Ning, et al., Phys. Rev. Lett. 102, 177005 (2009).

    Article  ADS  Google Scholar 

  4. S.-H. Baek, D. V. Efremov, J. M. Ok, et al., Nat. Mater. 14, 210 (2015).

    Article  ADS  Google Scholar 

  5. Qisi Wang, Yao Shen, Bingying Pan, et al., Nat. Mater. 15, 159 (2016).

    Article  ADS  Google Scholar 

  6. L. C. Rhodes, M. D. Watson, A. A. Haghighirad, et al., Phys. Rev. B 98, 180503(R) (2018).

  7. J. P. Sun, K. Matsuura, G. Z. Ye, et al., Nat. Commun. 7, 12146 (2016).

    Article  ADS  Google Scholar 

  8. T. Terashima, N. Kikugawa, S. Kasahara, et al., Phys. Rev. B 93, 180503(R) (2016).

  9. R. Khasanov, R. M. Fernandes, G. Simutis, et al., Phys. Rev. B 97, 224510 (2018).

    Article  ADS  Google Scholar 

  10. J. P. Sun, G. Z. Ye, P. Shahi, et al., Phys. Rev. Lett. 118, 147004 (2017).

    Article  ADS  Google Scholar 

  11. T. J. Liu, J. Hu, B. Qian, et al., Nat. Mater. 9, 716 (2010).

    Article  ADS  Google Scholar 

  12. A. K. Yadav, A. V. Sanchela, A. D. Thakur, C. V. Tomy, Solid St. Comm. 202, 8 (2015).

    Article  ADS  Google Scholar 

  13. R. J. Sun, Y. Quan, S. F. Jin, et al., Phys. Rev. B 98, 214508 (2018).

    Article  ADS  Google Scholar 

  14. A. Pourret, L. Malone, A. B. Antunes, et al., Phys. Rev. B 83, 020504(R) (2011).

  15. D. Chareev, E. Osadchii, T. Kuzmicheva, et al., Cryst. Eng. Comm. 15, 1989 (2013).

    Article  Google Scholar 

  16. S. Hartwig, N. Schäfera, M. Schulzeb, et al., Phys. B (Amsterdam, Neth.) 531, 102 (2018).

  17. T. M. McQueen, Q. Huang, V. Ksenofontov, et al., Phys. Rev. B 79, 014522 (2009).

    Article  ADS  Google Scholar 

  18. Y. Sun, T. Taen, T. Yamada, et al., Phys. Rev. B 89, 144512 (2014).

    Article  ADS  Google Scholar 

  19. R. Khasanov, M. Bendele, A. Amato, et al., Phys. Rev. B 80, 140511 (2009).

    Article  ADS  Google Scholar 

  20. Ji-Hoon Kang, Soon-Gil Jung, Sangyun Lee, et al., Supercond. Sci. Technol. 29, 035007 (2016).

    Article  ADS  Google Scholar 

  21. M. A. Tanatar, A. E. Böhmer, E. I. Timmons, et al., Phys. Rev. Lett. 117, 127001 (2016).

    Article  ADS  Google Scholar 

  22. Qisi Wang, Yao Shen, Bingying Pan, et al., Nat. Comm. 7, 12182 (2016).

    Article  ADS  Google Scholar 

  23. M. S. Grbić, N. Barišić, A. Dulčić, et al., Phys. Rev. B 80, 094511 (2009).

    Article  ADS  Google Scholar 

  24. I. Gimazov, Yu. Talanov, V. Sakhin, et al., Appl. Magn. Reson. 48, 861 (2017).

    Article  Google Scholar 

  25. Huan Yang, Guanyu Chen, Xiyu Zhu, Jie Xing, and Hai-Hu Wen, Phys. Rev. B 96, 064501 (2017).

    Article  ADS  Google Scholar 

  26. F. Nabeshima, K. Nagasawa, A. Maeda, and Y. Imai, Phys. Rev. B 97, 024504 (2018).

    Article  ADS  Google Scholar 

  27. B. C. Sales, A. S. Sefat, M. A. McGuire, et al., Phys. Rev. B 79, 094521 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Academy of Sciences via the grant of Program 1.12 Fundamental Problems of High-Temperature Superconductivity.

The work of D.A.Ch. and A.N.V. was supported by the program 211 of the Russian Federation Government (agreements no. 02.A03.21.0006, 02.A03.21.0011) and the Russian Foundation for Basic Research (project no. 17-29-10007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Gimazov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimazov, I.I., Lyadov, N.M., Chareev, D.A. et al. Short-Lived Electron Excitations in FeTe1 –xSex as Revealed by Microwave Absorption. J. Exp. Theor. Phys. 129, 81–85 (2019). https://doi.org/10.1134/S1063776119060013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119060013

Navigation