Skip to main content
Log in

Effect of the severe plastic deformation temperature on the diffusion properties of the grain boundaries in ultrafine-grained metals

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

A model is proposed to explain the effect of the severe plastic deformation (SPD) temperature on the diffusion properties of the grain boundaries in ultrafine-grained (UFG) metals and alloys. It is shown that an increase in the SPD temperature in UFG metals leads to an increase in the activation energy of grainboundary diffusion from (3–5)k B T m, which corresponds to the diffusion parameters of nonequilibrium grain boundaries, to (8–10)k B T m, which corresponds to the diffusion parameters of equilibrium grain boundaries (k B is the Boltzmann constant, T m is the melting temperature). The dependence of the activation energy of grain-boundary diffusion on the SPD temperature is found to be determined by the kinetics of the competing processes of defect accumulation at grain boundaries and the diffusion accommodation of defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Akhmadeev, R. Z. Valiev, V. I. Kopylov, and R. R. Mulyukov, “Formation of a submicrograined structure in copper and nickel using severe shear deformation,” Izv. Ross Akad. Nauk, Ser. Met., No. 5, 96–101 (1992).

    Google Scholar 

  2. R. Z. Valiev and T. G. Langdon, “Principles of equalchannel angular pressing as a processing tool for grain refinement,” Progr. Mater. Sci. 51 (7), 881–981 (2006).

    Article  Google Scholar 

  3. V. M. Segal, I. J. Beyerlein, C. N. Tome, V. N. Chuvil’deev, and V. I. Kopylov, Fundamentals and Engineering of Severe Plastic Deformation (Nova Sci. Publ., New York, 2010).

    Google Scholar 

  4. V. V. Rybin, Severe Plastic Deformation and Fracture of Metals (Metallurgiya, Moscow, 1986).

    Google Scholar 

  5. V. V. Rybin, N. Yu. Zolotorevskii, and E. A. Ushanova, “Analysis of the misoriented structures in the model copper–copper compound formed by explosion welding,” Technical Physics 59 (12), 1819–1832 (2014).

    Article  Google Scholar 

  6. V. N. Serebryany, V. Yu. Perezhogin, G. I. Raab, V. I. Kopylov, N. Yu. Tabachkova, V. P. Sirotinkin, and S. V. Dobatkin, “Structure, texture, and mechanical properties of an MA2-1hp magnesium alloy after twostage equal-channel angular pressing and intermediate annealing,” Russian Metallurgy (Metally), No. 1, 36–42 (2015).

    Article  Google Scholar 

  7. V. N. Chuvil’deev and V. I. Kopylov, “Grain refinement limit upon equal-channel angular deformation,” Russian Metallurgy (Metally), No. 1, 18–31 (2004).

    Google Scholar 

  8. S. V. Dobatkin, L. L. Rokhlin, G. A. Salishehev, V. I. Kopylov, V. N. Serebryany, N. D. Stepanov, I. E. Tarytina, I. S. Kuroshev, and N. S. Martynenko, “Structure and properties of an Mg–0.3% Ca magnesium alloy after multiaxial deformation and equalchannel angular pressing,” Russian Metallurgy (Metally), No. 11, 911–919 (2014).

    Article  Google Scholar 

  9. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, and V. I. Kopylov, “Relation between the strain, the hardness, and the structural element size in iron and structural steels at severe plastic deformation by various methods,” Fiz. Mezomekh. 16 (6), 71–80 (2013).

    Google Scholar 

  10. A. I. Lotkov, A. A. Baturin, V. N. Grishkov, and V. I. Kopylov, “Possible role of lattice defects in the mechanisms of nanofragmentation of a grain structure during severe cold plastic deformation of metals and alloys,” Fiz. Mezomekh. 10 (3), 67–79 (2007).

    Google Scholar 

  11. A. Goloborodko, O. Sitdikov, R. Kaibyshev, H. Miura, and T. Sakai, “Effect of pressing temperature on finegrained structure formation in 7475 aluminum alloy during ECAP,” Mater. Sci. Eng. A 381 (1–2), 121–128 (2004).

    Article  Google Scholar 

  12. Y. C. Chen, Y. Y. Huang, C. P. Chang, and P. W. Kao, “The effect of extrusion temperature on the development of deformation microstructures in 5052 aluminum alloy processed by equal channel angular extrusion,” Acta Materialia 51 (7), 2005–2015 (2003).

    Article  Google Scholar 

  13. V. I. Chuvil’deev, V. I. Kopylov, A. V. Nokhrin, I. M. Makarov, and Yu. G. Lopatin, “Dispersion limit for ECA deformation: effect of temperature,” Dokl. Ross. Akad. Nauk 369 (3), 332–338 (2004).

    Google Scholar 

  14. A. Yamashita, D. Yamaguchi, Z. Horita, and T. G. Langdon, “Influence of pressing temperature on microstructural development in equal-channel angular pressing,” Mater. Sci. Eng. A 287 (1), 100–106 (2000).

    Article  Google Scholar 

  15. W. H. Huang, C. Y. Yu, P. W. Kao, and C. P. Chang, “The effect of strain path and temperature on the microstructure developed in copper by ECAR,” Mater. Sci. Eng. A 366 (2), 221–228 (2004).

    Article  Google Scholar 

  16. D. H. Shin, J.-J. Pak, Y.-K. Kim, K.-T. Park, and Y.-S. Kim, “WITHDRAWN: effect of pressing temperature on microstructure and tensile behavior of low carbon steels processed by equal channel angular pressing,” Mater. Sci. Eng. A 325 (1–2), 31–37 (2002).

    Article  Google Scholar 

  17. G. I. Raab, E. P. Soshnikova, and R. Z. Valiev, “Influence of temperature and hydrostatic pressure during equal-channel angular pressing on the microstructure of commercial-purity Ti,” Mater. Sci. Eng. A 387–389, 674–677 (2004).

    Article  Google Scholar 

  18. H. Wen, Y. Zhao, T. D. Topping, D. Ashford, R. B. Figueiredo, Ch. Xu, T. G. Langdon, and E. J. Lavernia, “Influence of pressing temperature on microstructure evolution and mechanical behavior of ultrafine-grained Cu processed by equal-channel angular pressing,” Advanc. Eng. Mater. 14 (3), 185–194 (2012).

    Article  Google Scholar 

  19. I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, and R. Kaibyshev, “Effect of deformation temperature on microstructure evolution in aluminum alloy 2219 during hot ECAP,” Mater. Sci. Eng. A 486 (1–2), 662–671 (2008).

    Article  Google Scholar 

  20. O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, Y. Kimura, and K. Tsuzaki, “Grain refinement in a commercial Al–Mg–Sc alloy under hot ECAP,” Mater. Sci. Eng. A 444 (1–2), 18–30 (2007).

    Article  Google Scholar 

  21. P. Málek, M. Cieslar, and R. K. Islamgaliev, “The influence of ECAP temperature on the stability Al–Zn–Mg–Cu alloy,” J. Alloys Comp. 378 (1–2), 237–241 (2004).

    Article  Google Scholar 

  22. O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, and Y. Watanabe, “Microstructure behavior of Al–Mg–Sc alloy processed by ECAP at elevated temperature,” Acta Materialia 56 (4), 821–834 (2008).

    Article  Google Scholar 

  23. Y. Y. Wang, P. L. Sun, P. W. Kao, and C. P. Chang, “Effect of deformation temperature on the microstructure developed in commercial purity aluminum processed by equal channel angular extrusion,” Scripta Materialia 50 (5), 613–617 (2004).

    Article  Google Scholar 

  24. O. Sitdikov, E. Avtokratova, R. Babicheva, T. Sakai, K. Tsuzaki, and Y. Watanabe, “Influence of processing regimes on fine-grained microstructure development in an AlMgSc alloy by hot equal-channel angular pressing,” Mater. Trans. 53 (1), 56–62 (2012).

    Article  Google Scholar 

  25. U. Chakkingal and P. F. Thomson, “Development of microstructure and texture during high temperature equal channel angular extrusion of aluminium,” J. Mater. Proc. Technol. 117 (1–2), 169–177 (2001).

    Article  Google Scholar 

  26. P. Rodriguez-Calvillo and J. M. Cabrera, “Microstructure and mechanical properties of a commercial pure Ti processed by warm equal channel angular pressing,” Mater. Sci. Eng. A 625, 311–320 (2015).

    Article  Google Scholar 

  27. I. Kim, J. Kim, D. H. Shin, C. S. Lee, and S. K. Hwang, “Effects of equal channel angular pressing temperature on deformation structures of pure Ti,” Mater. Sci. Eng. 342 (1–2), 302–310 (2003).

    Article  Google Scholar 

  28. M. Hoseini, M. H. Pourian, F. Bridier, H. Vali, J. A. Szpunar, and P. Bocher, “Thermal stability and annealing behavior of ultrafine grained commercially pure titanium,” Mater. Sci. Eng. 532, 58–63 (2012).

    Article  Google Scholar 

  29. P. Luo, D. T. McDonald, S. Palanisamy, M. S. Dargush, and K. Xia, “Ultrafine-grained pure Ti recycled by equal channel angular pressing with high strength and good ductility,” J. Mater. Proc. Technol. 213 (3), 469–476 (2013).

    Article  Google Scholar 

  30. S. V. Sajadifar and G. G. Yapici, “Elevated temperature mechanical behavior of severely deformed titanium,” J. Mater. Eng. Perform 23 (5), 1834–1844 (2014).

    Article  Google Scholar 

  31. H.-K. Kim, “Activation energies for the grain growth of an AZ31 Mg alloy after equal channel angular pressing,” J. Mater. Sci. 39 (23), 7107–7109 (2004).

    Article  Google Scholar 

  32. S. M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Paul, “Characterization of ultrafine and nanograined magnesium alloy processed by severe plastic deformation,” Mater. Characterization 87, 27–35 (2014).

    Article  Google Scholar 

  33. Y. Miyahara, Z. Horita, and T. G. Langdon, “Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP,” Mater. Sci. Eng. A 420 (1–2), 240–244 (2006).

    Article  Google Scholar 

  34. K. Xia, J. T. Wang, X. Wu, G. Chen, and M. Gurvan, “Equal channel angular pressing of magnesium alloy AZ31,” Mater. Sci. Eng. A 410–411, 324–327 (2005).

    Article  Google Scholar 

  35. C. W. Su, B. W. Chua, L. Lu, and M. O. Lai, “Properties of severe plastically deformed Mg alloys,” Mater. Sci. Eng. A 402 (1–2), 163–169 (2005).

    Article  Google Scholar 

  36. L. J. Dongliang, L. D. Mao, X. Zeng, and W. Ding, “Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion,” Mater. Lett. 59 (18), 2267–2270 (2005).

    Article  Google Scholar 

  37. K. Kubota, M. Mabuchi, and K. Higashi, “Processing and mechanical properties of fine-grained magnesium alloys,” J. Mater. Sci. 34 (10), 2255–2262 (1999).

    Article  Google Scholar 

  38. T. I. Chashchukhina, M. V. Degtyarev, and L. M. Voronova, “Effect of pressure on the structural evolution of copper during severe plastic deformation,” Fiz. Met. Metalloved. 109 (2), 216–224 (2010).

    Google Scholar 

  39. T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev, and D. K. Pokryshkina, “Deformation and dynamic recrystallization in copper at various strain rates in Bridgman anvils,” Fiz. Met. Metalloved. 111 (3), 315–324 (2011).

    Google Scholar 

  40. D. K. Pokryshkina, M. V. Degtyarev, V. I. Kopylov, L. M. Voronova, and T. I. Chashchukhina, “Dynamic recrystallization of copper with various iml structures during shear under pressure,” Def. Razr. Mater., No. 4, 19–25 (2011).

    Google Scholar 

  41. O. F. Higuera, P. R. Calvillo, and J. M. Cabrera, “Thermal stability and microstructural behavior of ECAP processed copper,” in Proceedings of AIP Conference (2011), Vol. 1353, pp. 553–558.

    Google Scholar 

  42. O. F. Higuera and J. M. Cabrera, “Microstructure influencing physical and mechanical properties of electrolytic tough pitch copper produced by equal channel angular extrusion,” Mech. Mater. 67, 9–14 (2013).

    Article  Google Scholar 

  43. X. Molodova, G. Gottstein, M. Winning, and R. J. Hellmig, “Thermal stability of ECAP processed pure copper,” Mater. Sci. Eng. A 460–461, 204–213 (2007).

    Article  Google Scholar 

  44. W. Q. Cao, C. F. Gu, E. V. Pereloma, and C. H. J. Davies, “Stored energy, vacancies and thermal stability of ultrafine grained copper,” Mater. Sci. Eng. A 492 (1–2), 74–79 (2008).

    Article  Google Scholar 

  45. O. F. Higuera-Cobos and J. M. Cabrera, “Mechanical, microstructural and electrical evolution of commercially pure copper processed by equal channel angular extrusion,” Mater. Sci. Eng. A 571, 103–114 (2013).

    Article  Google Scholar 

  46. K. V. Ivanov and E. V. Naydenkin, “Activation parameters and deformation mechanisms of ultrafine-grained copper under tension at moderate temperatures,” Mater. Sci. Eng. A 608, 123–129 (2014).

    Article  Google Scholar 

  47. Y. L. Wang, R. Lapovok, J. T. Wang, Y. Sh. Qi, and Y. Estrin, “Thermal behavior of copper processed by ECAP with and without back pressure,” Mater. Sci. Eng. A 628, 21–29 (2015).

    Article  Google Scholar 

  48. N. Lugo, N. Llorca, J. J. Sunol, and J. M. Cabrera, “Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing,” J. Mater. Sci. 45 (9), 2264–2273 (2010).

    Article  Google Scholar 

  49. G. Benchabane, Z. Boumerzoung, I. Thibon, and T. Gloriant, “Recrystallization of pure copper investigated by calorimetry and microhardness,” Mater. Characterization 59 (10), 1425–1428 (2008).

    Article  Google Scholar 

  50. V. N. Perevezentsev and G. F. Sarafanov, “Computer simulation of terminated sub-boundary formation in the disclitation elastic field,” Mater. Sci. Eng. A 503 (1–2), 137–140 (2009).

    Article  Google Scholar 

  51. G. F. Sarafanov and V. N. Perevezentsev, “Formation of terminating subboundaries in the elastic field of a planar mesodefect,” Pis’ma Zh. Tekh. Fiz. 35 (7), 21–27 (2009).

    Google Scholar 

  52. V. V. Rybin, “Laws of mesostructure formation during severe plastic deformation,” Vopr. Materialoved. 29 (1), 11–33 (2002).

    Google Scholar 

  53. A. Nazarov, A. E. Romanov, and R. Z. Valiev, “Random disclitation ensembles in ultrafine-grained materials produced by severe plastic deformation,” Scripta Materialia 34 (5), 729–734 (1996).

    Article  Google Scholar 

  54. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, “Transformations of grain boundaries in deformed nanocrystalline materials,” Acta Materialia 52 (13), 3793–3805 (2004).

    Article  Google Scholar 

  55. G. A. Malygin, “Analysis of the parameters of the submicron dislocation structure in metals at severe plastic deformation,” Fiz. Tverd. Tela 46 (11), 1968–1974 (2004).

    Google Scholar 

  56. S. V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, and G. Wilde, “Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing,” Acta Materialia 59 (5), 1974–1985 (2011).

    Article  Google Scholar 

  57. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, A. P. Zhilyaev, E. F. Dudarev, K. V. Ivanov, M. B. Ivanov, O. A. Kashin, and E. V. Naidenkin, Grain-Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001).

    Google Scholar 

  58. Yu. R. Kolobov, G. P. Grabovetskaya, K. V. Ivanov, and N. V. Girsova, “Effect of the state of boundaries and the grain size on the creep mechanisms of submicrocrystalline nickel,” Fiz. Met. Metalloved. 91 (5), 107–112 (2001).

    Google Scholar 

  59. G. P. Grabovetskaya, I. P. Mishin, I. V. Ratochka, S. G. Psakh’e, and Yu. R. Kolobov, “Grain-boundary diffusion of nickel in submicrocrystalline molybdenum produced by severe plastic deformation,” Pis’ma Zh. Tekh. Fiz. 34 (4), 1–7 (2008).

    Google Scholar 

  60. Y. Amouyal, S. V. Divinski, L. Klinger, and E. Rabkin, “Grain boundary diffusion and recrystallization in ultrafine grain copper produced by equal channel angular pressing,” Acta Materialia 56 (19), 5500–5513 (2008).

    Article  Google Scholar 

  61. Y. Amouyal, S. V. Divinski, Y. Estrin, and E. Rabkin, “Short-circuit diffusion in an ultrafine-grained copper–zirconium alloy produced by equal channel angular pressing,” Acta Materialia 55 (17), 5968–5979 (2007).

    Article  Google Scholar 

  62. V. N. Chuvil’deev, Nonequilibrium Boundaries in Grains in Metals. Theory and Applications (Fizmatlit, Moscow, 2004).

    Google Scholar 

  63. V. A. Likhachev and R. Yu. Khairov, Introduction to the Theory of Disclinations (Izd. LGU, Leningrad, 1975).

    Google Scholar 

  64. G. G. Frost and M. F. Eshbi, Deformation-Mechanism Maps (Pergamon, Oxford, 1982).

    Google Scholar 

  65. V. N. Perevezentsev, V. N. Chuvil’deev, V. I. Kopylov, A. N. Sysoev, and T. G. Langdon, “Developing high strain rate superplasticity in Al–Mg–Sc–Zr alloys using equal-channel angular pressing,” Ann. Chim.: Sci. Mater. 27 (3), 36–44 (2002).

    Google Scholar 

  66. V. N. Chuvil’deev, V. I. Kopylov, A. V. Nokhrin, I. M. Makarov, L. M. Malashenko, and V. A. Kukareko, “Recrystallization in microcrystalline copper and nickel produced by equal-channel angular pressing: I. Structural investigations. Effect of anomalous growth,” Fiz. Met. Metalloved. 96 (5), 51–60 (2003).

    Google Scholar 

  67. Yu. V. Ivanisenko, A. A. Sirenko, and A. V. Korznikov, “Effect of heating on the structure and mechanical properties of submicron-grained armco iron,” Fiz. Met. Metalloved. 87 (4), 78–83 (1999).

    Google Scholar 

  68. T. I. Chashchukhina, M. V. Degtyarev, L. M. Voronova, L. S. Davydova, and V. P. Pilyugin, “Effect of the deformation mode on the hardness and structure of armco iron and structural steel upon deformation and subsequent annealing,” Fiz. Met. Metalloved. 91 (5), 75–83 (2001).

    Google Scholar 

  69. C. T. Wang, N. Gao, M. G. Gee, R. J. K. Wood, and T. G. Langdon, “Effect of grain size on the micro-tribological of pure titanium processed by high-pressure torsion,” Wear 280–281, 28–35 (2012).

    Article  Google Scholar 

  70. N. A. Krasil’nikov, “Structure and mechanical properties of chromium after severe plastic deformation,” Fiz. Met. Metalloved. 91 (3), 81–87 (2001).

    Google Scholar 

  71. A. V. Korznikov, S. Idrisova, and N. I. Noskova, “Structure and thermal stability of submicron-grained molybdenum,” Fiz. Met. Metalloved. 85 (3), 113–118 (1998).

    Google Scholar 

  72. R. K. Islamgaliev, V. U. Kazyahanov, L. O. Shestakova, A. V. Sharafutdinov, and R. Z. Valiev, “Microstructure and mechanical properties of titanium (Grade 4) processed by high-pressure torsion,” Mater. Sci. Eng. A 493 (1–2), 190–194 (2008).

    Article  Google Scholar 

  73. D. V. Gunderov, A. V. Polyakov, I. P. Semenova, G. I. Raab, A. A. Churakova, E. I. Gimaltdinova, I. Sabirov, J. Segurado, V. D. Sitdikov, I. V. Alexandrov, N. A. Enikeev, and R. Z. Valiev, “Evolution of microstructure, macrotexture and mechanical properties of commercial pure Ti during ECAP,” Mater. Sci. Eng. A 562, 128–136 (2013).

    Article  Google Scholar 

  74. P. Sh. Roodposhti, N. Farahbakhsh, A. Sarkar, and K. L. Murtu, “Microstructural approach to equal channel angular processing of commercially pure titanium: a review,” Trans. Nonfer. Metals Soc. China 25, 1353–1366 (2015).

    Article  Google Scholar 

  75. Y. G. Ko, W. S. Jung, D. H. Shin, and C. S. Lee, “Effects of temperature and initial microstructure on the equal channel angular pressing of Ti–6A1–4V alloy,” Scripta Materialia 48 (2), 197–202 (2003).

    Article  Google Scholar 

  76. G. G. Yapici, I. Karaman, Z. P. Luo, and H. Rack, “Microstructure and mechanical properties of severely deformed powder processed Ti–6A1–4V using equal channel angular extrusion,” Scripta Materialia 49 (10), 1021–1027 (2003).

    Article  Google Scholar 

  77. G. G. Yapici, I. Karaman, and Z.-P. Luo, “Mechanical twinning and texture evolution in severely deformed Ti–6A1–4V at high temperatures,” Acta Materialia 54 (14), 3755–3771 (2006).

    Article  Google Scholar 

  78. A. V. Nokhrin, “Acceleration of grain-boundary diffusion during recrystallization in submicrocrystalline metals and alloys produced by severe plastic deformation,” Pis’ma Zh. Tekh. Fiz. 38 (13), 70–78 (2012).

    Google Scholar 

  79. D. Prokoshkina, L. Klinger, A. Moros, G. Wilde, E. Rabkin, and S. V. Divinski, “Effect of recrystallization on diffusion in ultrafine-grained Ni,” Acta Materialia 69, 314–325 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nokhrin.

Additional information

Original Russian Text © V.N. Chuvil’deev, M.M. Myshlyaev, A.V. Nokhrin, V.I. Kopylov, Yu.G. Lopatin, O.E. Pirozhnikova, A.V. Piskunov, A.V. Semenycheva, A.A. Bobrov, 2017, published in Metally, 2017, No. 3, pp. 62–76.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvil’deev, V.N., Myshlyaev, M.M., Nokhrin, A.V. et al. Effect of the severe plastic deformation temperature on the diffusion properties of the grain boundaries in ultrafine-grained metals. Russ. Metall. 2017, 413–425 (2017). https://doi.org/10.1134/S0036029517050044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029517050044

Keywords

Navigation