Russian Journal of Physical Chemistry A

, Volume 92, Issue 10, pp 1970–1974 | Cite as

The Equilibrium Molecular Structure of 4-Cyanopyridine According to a Combined Analysis of Gas-Phase Electron Diffraction and Microwave Data and Coupled-Cluster Computations

  • L. S. KhaikinEmail author
  • N. VogtEmail author
  • A. N. Rykov
  • O. E. Grikina
  • Jean Demaison
  • Jürgen Vogt
  • I. V. KochikovEmail author
  • Ya. D. Shishova
  • E. S. Ageeva
  • I. F. Shishkov


The equilibrium structure of the 4-cyanopyridine molecule was determined from experimental data for the first time. The computations performed at the CCSD(T) level agree well with the results of the combined electron diffraction and microwave data analysis. The effect of the para-cyano substituent on the geometry of the pyridine ring is observed in comparison with the literature data for the pyridine molecule.


4-cyanopyridine gas electron diffraction quantum chemical calculations microwave spectroscopy equilibrium structure 


  1. 1.
    R. G. Ford, J. Mol. Spectrosc. 58, 178 (1975).CrossRefGoogle Scholar
  2. 2.
    N. Heineking and H. Dreizler, Z. Naturforsch. 42a, 83 (1987).Google Scholar
  3. 3.
    M. Laing, N. Sparrow, and P. Sommerville, Acta Crystallogr. B 27, 1986 (1971).CrossRefGoogle Scholar
  4. 4.
    Y. Umar, IOSR J. Appl. Chem. 8, 44 (2015).Google Scholar
  5. 5.
    I. V. Kochikov, D. M. Kovtun, and Yu. I. Tarasov, Vychisl. Metody Programmir., Sect. 2 9, 12 (2008).Google Scholar
  6. 6.
    J. H. S. Green and D. J. Harrison, Spectrochim. Acta A 33, 75 (1977).CrossRefGoogle Scholar
  7. 7.
    G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).CrossRefGoogle Scholar
  8. 8.
    K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).CrossRefGoogle Scholar
  9. 9.
    K. A. Peterson and T. H. Dunning, J. Chem. Phys. 117, 10548 (2002).CrossRefGoogle Scholar
  10. 10.
    C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).CrossRefGoogle Scholar
  11. 11.
    N. Vogt, L. S. Khaikin, O. E. Grikina, and A. N. Rykov, J. Mol. Struct. 1050, 114 (2013).CrossRefGoogle Scholar
  12. 12.
    N. Vogt, J. Demaison, H. D. Rudolph, and A. Perrin, Phys. Chem. Chem. Phys. 17, 30440 (2015).CrossRefPubMedGoogle Scholar
  13. 13.
    M. Juanes, N. Vogt, J. Demaison, I. Leon, A. Lesarri, and H. D. Rudolph, Phys. Chem. Chem. Phys. 19, 29162 (2017).CrossRefPubMedGoogle Scholar
  14. 14.
    N. Vogt, I. I. Marochkin, and A. N. Rykov, J. Phys. Chem. A 119, 152 (2015).CrossRefPubMedGoogle Scholar
  15. 15.
    T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).CrossRefGoogle Scholar
  16. 16.
    G. Fogarasi and P. Pulay, in Vibrational Spectra and Structure, Ed. by J. R. Durig (Elsevier, Amsterdam, 1985), Vol. 14, Chap. 3, p. 125.Google Scholar
  17. 17.
    H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schutz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, et al., MOLPRO Program Package (2009).Google Scholar
  18. 18.
    H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 242 (2012).Google Scholar
  19. 19.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Rev. C.01 (Gaussian Inc., Wallingford, CT, 2010).Google Scholar
  20. 20.
    I. V. Kochikov, Yu. I. Tarasov, G. M. Kuramshina, V. P. Spiridonov, A. G. Yagola, and T. G. Strand, J. Mol. Struct. 445, 243 (1998).CrossRefGoogle Scholar
  21. 21.
    I. V. Kochikov, Yu. I. Tarasov, V. P. Spiridonov, G. M. Kuramshina, A. G. Yagola, A. S. Saakjan, M. V. Popik, and S. Samdal, J. Mol. Struct. 485–486, 421 (1999).CrossRefGoogle Scholar
  22. 22.
    I. V. Kochikov, Yu. I. Tarasov, N. Vogt, and V. P. Spiridonov, J. Mol. Struct. 607, 163 (2002).CrossRefGoogle Scholar
  23. 23.
    M. Dakkouri, I. V. Kochikov, Yu. I. Tarasov, N. Vogt, J. Vogt, and R. Bitschenauer, J. Mol. Struct. 607, 195 (2002).CrossRefGoogle Scholar
  24. 24.
    I. V. Kochikov and Yu. I. Tarasov, Struct. Chem. 14, 227 (2003).CrossRefGoogle Scholar
  25. 25.
    L. S. Khaikin, I. V. Kochikov, O. E. Grikina, D. S. Ti-khonov, and E. G. Baskir, Struct. Chem. 26, 1651 (2015).CrossRefGoogle Scholar
  26. 26.
    V. P. Spiridonov, N. Vogt, and J. Vogt, Struct. Chem. 12, 349 (2001).CrossRefGoogle Scholar
  27. 27.
    V. P. Spiridonov, in Advances in Molecular Structure Research (JAI Press, Greenwich CT, 1997), Vol. 3, p. 53.Google Scholar
  28. 28.
    A. G. Császár, J. Demaison, and H. D. Rudolph, J. Phys. Chem. A 119, 1731 (2015).CrossRefPubMedGoogle Scholar
  29. 29.
    N. Vogt, D. S. Savelyev, N. I. Giricheva, M. K. Islyaikin, and G. V. Girichev, J. Phys. Chem. A 120, 8853 (2016).CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. S. Khaikin
    • 1
    Email author
  • N. Vogt
    • 1
    • 2
    Email author
  • A. N. Rykov
    • 1
  • O. E. Grikina
    • 1
  • Jean Demaison
    • 2
  • Jürgen Vogt
    • 2
  • I. V. Kochikov
    • 3
    Email author
  • Ya. D. Shishova
    • 1
  • E. S. Ageeva
    • 1
  • I. F. Shishkov
    • 1
  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Section of Chemical Information Systems, University of UlmUlmGermany
  3. 3.Scientific Research Computer Center, Moscow State UniversityMoscowRussia

Personalised recommendations