Skip to main content
Log in

Circular Dichroism of Atomic Transitions of the Rb D1 Line in Magnetic Fields

  • SPECTROSCOPY AND PHYSICS OF ATOMS AND MOLECULES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The circular dichroism effect has been investigated for atomic transitions of the Rb D1 line in magnetic fields of up to 3 kG using circularly polarized σ+ and σ radiation. The process of selective reflection from a 350-nm-thick nanocell has been used, which makes it possible to form narrow atomic lines and observe separately the behavior of individual transitions. Two groups consisting of six (85Rb atoms) and four (87Rb atoms) transitions are formed in magnetic fields B > 0.5 kG upon σ+ and σ laser excitation. All transitions have been identified. It is shown that the strongest transitions for 87Rb and 85Rb atoms in magnetic fields of up to several kG are formed under σ irradiation. A further increase in the magnetic field makes it possible to attain the Paschen–Back regime on a hyperfine structure, for which the probabilities of transitions upon σ+ and σ excitation become identical. The theoretical model and experiment are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. Budker, W. Gawlik, D. Kimball, et al., Rev. Mod. Phys. 74, 1153 (2002).

    Article  ADS  Google Scholar 

  2. D. Budker, D. F. Kimball, and D. P. DeMille, Atomic Physics: An Exploration through Problems and Solutions (Oxford Univ. Press, Oxford, 2010).

    Google Scholar 

  3. M. Auzinsh, D. Budker, and M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford Univ. Press, Oxford, 2010).

    MATH  Google Scholar 

  4. P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, and N. Cyr, Phys. Rev. A 42, 2766 (1990).

    Article  ADS  Google Scholar 

  5. E. B. Aleksandrov, G. I. Khvostenko, and M. P. Chaika, Interference of Atomic States (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  6. A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, Laser Phys. Lett. 11, 055701 (2014).

    Article  ADS  Google Scholar 

  7. S. Scotto, D. Ciampini, and C. Rizzo, Phys. Rev. A 92, 063810 (2015).

    Article  ADS  Google Scholar 

  8. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, J. Opt. Soc. Am. B 31, 1046 (2014).

    Article  ADS  Google Scholar 

  9. A. Sargsyan, A. Tonoyan, G. Akhumyan, and D. Sarkisyan, JETP Lett. 106, 700 (2017).

    Article  ADS  Google Scholar 

  10. A. Tonoyan, A. Sargsyan, E. Klinger, G. Hakhumyan, C. Leroy, M. Auzinsh, A. Papoyan, and D. Sarkisyan, Europhys. Lett. 121, 53001 (2018).

    Article  ADS  Google Scholar 

  11. M. Ilchen, N. Douguet, T. Mazza, et al., Phys. Rev. Lett. 118, 013002 (2017).

    Article  ADS  Google Scholar 

  12. A. Sargsyan, E. Klinger, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, JETP Lett. 40, 224 (1984).

    Google Scholar 

  13. A. Sargsyan, A. Papoyan, I. G. Hughes, Ch. S. Adams, and D. Sarkisyan, Opt. Lett. 42, 1476 (2017).

    Article  ADS  Google Scholar 

  14. A. Sargsyan, G. Hakhumyan, A. Papoyan, D. Sarkisyan, A. Atvars, and M. Auzinsh, Appl. Phys. Lett. 93, 021119 (2008).

    Article  ADS  Google Scholar 

  15. A. Sargsyan, E. Klinger, G. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, and D. Sarkisyan, J. Opt. Soc. Am. B 34, 776 (2017).

    Article  ADS  Google Scholar 

  16. T. A. Vartanyan and D. L. Lin, Phys. Rev. A 51, 1959 (1995).

    Article  ADS  Google Scholar 

  17. M. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, Comput. Phys. Commun. 189, 162 (2015).

    Article  ADS  Google Scholar 

  18. B. A. Olsen, B. Patton, Y. Y. Jau, and W. Happer, Phys. Rev. A 84, 063410 (2011).

    Article  ADS  Google Scholar 

  19. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 1379 (2012).

    Article  ADS  Google Scholar 

  20. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, J. Phys. B 45, 215005 (2012).

    Article  ADS  Google Scholar 

  21. A. Sargsyan, G. Hakhumyan, A. Tonoyan, P. A. Petrov, and T. A. Vartanyan, Opt. Spectrosc. 119, 202 (2015).

    Article  ADS  Google Scholar 

  22. G. Hakhumyan, D. Sarkisyan, A. Sargsyan, A. Atvars, and M. Auzinsh, Opt. Spectrosc. 108, 685 (2010).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.S. Sarkisyan for preparing the nanocell and A. Tonoyan and G. Akhumyan for fruitful discussions. The investigation by T.A. Vartanyan was performed within state contract no. 3.4903.2017/6.7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Vartanyan.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Klinger, E., Leroy, C. et al. Circular Dichroism of Atomic Transitions of the Rb D1 Line in Magnetic Fields. Opt. Spectrosc. 125, 833–838 (2018). https://doi.org/10.1134/S0030400X18120196

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18120196

Navigation