Skip to main content
Log in

Experimental Validation of Monte Carlo Simulation for the Leksell Gamma Knife Perfexion Using Gafchromic EBT3 Dosimetry Film and Diamond Detector T60019 PTW

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

This work presents experimental measurements performed using GAFChromic EBT3 dosimetry film and diamond detector T60019 to validate penEasy Monte Carlo based model developed previously for the Leksell Gamma Knife Perfexion. The relative dose profiles along X and Z coordinate axes, for each collimator size 4, 8, and 16 mm, and the relative output factors have been investigated. The penEasy model has been validated comparing the calculated output factors and dose profiles with the corresponding experimental results. The differences between the calculated output factors and the corresponding data measured with diamond detector were found to be 1.8 and 2.1% for the 8 and 4 mm collimator, respectively. Excellent agreement was found between penEasy and EBT3 results. The differences in the output factors were found to be 0.4% and −0.7% for the 8 and 4 mm collimators, respectively. The relative dose profiles were found to be in good agreement for both detectors and penEasy data. The gamma index test returns values (3%, 1 mm) < 1 for all profiles comparison calculated between penEasy and EBT3 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kostjuchenko, V.V., in Neuroradiosurgery with Gamma Knife, Golanov, A.V. and Kostjuchenko, V.V., Eds., Moscow: IP T.A. Alekseeva, 2018, p. 121.

  2. Lindquist, C. and Paddick, I., Oper. Neurosurg., 2007, vol. 61, p. 130. https://doi.org/10.1227/01.neu.0000289726.35330.8a

    Article  Google Scholar 

  3. Ma, L., Kjäll, P., Novotny, J., Jr., Nordström, H., Johansson, J., and Verhey, L., Phys. Med. Biol., 2009, vol. 54, no. 12, p. 3897. https://doi.org/10.1088/0031-9155/54/12/019

    Article  Google Scholar 

  4. Medjadj, T., Ksenofontov, A.I., and Dalechina, A.V., Med. Radiol. Radiat. Saf., 2020, vol. 65, no. 1, p. 54. https://doi.org/10.12737/1024-6177-2020-65-1-54-58

    Article  Google Scholar 

  5. Gafchromic Dosimetry Films, Ashland, 2020. http://www.gafchromic.com/documents/EBT3_ Specifications.pdf. Accessed February 27, 2020.

  6. Huet, C., Moignier, C., Fontaine, J., and Clairand, I., Radiat. Meas., 2014, vol. 71, p. 364. https://doi.org/10.1016/j.radmeas.2014.05.020

    Article  Google Scholar 

  7. Lewis, D., Micke, A., Yu, X., and Chan, M.F., Med. Phys., 2012, vol. 39, no. 10, p. 6339. https://doi.org/10.1118/1.4754797

    Article  Google Scholar 

  8. Chung, J.P., Oh, S.W., Seong, Y.M., Chun, K.J., and Chung, H.T., Phys. Med., 2016, vol. 32, no. 2, p. 368. https://doi.org/10.1016/j.ejmp.2016.02.001

    Article  Google Scholar 

  9. Devic, S., Tomic, N., and Lewis, D., Phys. Med., 2016, vol. 32, no. 4, p. 541. https://doi.org/10.1016/j.ejmp.2016.02.008

    Article  Google Scholar 

  10. Marroquin, E.Y.L., González, J.A.H., López, M.A.C., Barajas, J.E.V., and García-Garduño, O.A., J. Appl. Clin. Med. Phys., 2016, vol. 17, no. 5, pp. 466–481. https://doi.org/10.1120/jacmp.v17i5.6262

    Article  Google Scholar 

  11. Ferreira, B.C., Lopes, M.C., and Capela, M., Phys. Med. Biol., 2009, vol. 54, no. 4, p. 1073. https://doi.org/10.1088/0031-9155/54/4/017

    Article  Google Scholar 

  12. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., Nat. Methods, 2012, vol. 9, p. 671. https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  13. Williams, M. and Metcalfe, P., Concepts Trends Med. Radiat. Dosim., 2011, vol. 1345, p. 75. https://doi.org/10.1063/1.3576160

    Article  ADS  Google Scholar 

  14. Devic, S., Seuntjens, J., Sham, E., Podgorsak, E., Schmidtlein, C.R., Kilrov, A.S., and Soares, C.G., Med. Phys., 2005, vol. 32, no. 7, p. 2245. https://doi.org/10.1118/1.1929253

    Article  Google Scholar 

  15. Benmakhlouf, H., Johansson, J., Paddick, I., and Andreo, P., Phys. Med. Biol., 2015, vol. 60, no. 10, p. 3959. https://doi.org/10.1088/0031-9155/60/10/3959

    Article  Google Scholar 

  16. Zoros, E., Moutsatsos, A., Pappas, E.P., Georgiou, E., Kollias G., Karaiskos, P., and Pantelis, E., Phys. Med. Biol., 2017, vol. 62, p. 7532. https://doi.org/10.1088/1361-6560/aa8590

    Article  Google Scholar 

  17. Alfonso, R., Andreo, P., Capote, R., Saiful Huq, M., Kilby, W., Kjäll, P., Mackie, T.R., Palmans, H., Rosser, K., Seuntjens, J., Ullrich, W., and Vatnitsky, S., Med. Phys., 2008, vol. 35, no. 11, p. 5179. https://doi.org/10.1118/1.3005481

    Article  Google Scholar 

  18. Mancosu, P., Reggiori, G., Stravato, A., Gaudino, A., Lobefalo, F., Palumbo, V., Navarria, P., Ascolese, A., Picozzi, P., Marinelli, M., Verona-Rinati, G., Tomatis, S., and Scorsetti, M., Med. Phys., 2015, vol. 42, no. 9, p. 5035. https://doi.org/10.1118/1.4927569

    Article  Google Scholar 

  19. IAEA, Dosimetry of Small Static Fields Used in External Beam Radiotherapy, Technical Reports Series no. 483, Vienna: International Atomic Energy Agency, 2017.

  20. Low, D.A., Harms, W.B., Mutic, S., and Purdy, J.A., Med. Phys., 1998, vol. 25, p. 656. https://doi.org/10.1118/1.598248

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Alexey Moiseev, PhD for providing 3D printer and assistance in printing the homemade insert. Furthermore, the authors thank Andrey Golanov, MD, PhD, Gennady Gorlachev, PhD and Sergey Khromov, MSc for providing the dosimetric equipment, and Angelika Artemenkova, MSc for her assistance in performing the experiments.

Funding

This study was supported by the Russian Foundation for Basic Research and SITMA as part of research project no. 18-52-34008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Medjadj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medjadj, T., Ksenofontov, A.I., Klimanov, V.A. et al. Experimental Validation of Monte Carlo Simulation for the Leksell Gamma Knife Perfexion Using Gafchromic EBT3 Dosimetry Film and Diamond Detector T60019 PTW. Instrum Exp Tech 64, 146–152 (2021). https://doi.org/10.1134/S0020441221010292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221010292

Navigation