Skip to main content
Log in

The occurrence of tissue-specific twitchin isoforms in the mussel Mytilus galloprovincialis

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The catch state in Mytilus anterior byssus retractor muscle is regulated by phosphorylation and dephosphorylation of twitchin, a member of the titin/connectin superfamily, and involves two serine residues, Ser-1075 (D1) and Ser-4316 (D2). This study was undertaken to examine whether isoforms of twitchin were expressed in various muscles of the mussel Mytilus galloprovincialis by reverse transcription-polymerase chain reaction. Mussel tissues, including both catch and non-catch muscles, contained various twitchin isoforms that all contained the D2 site and the kinase domain. However, sequence alterations were detected around the D1 site, notably a potential deletion of the D1 site. All isoforms from catch muscles contained both the D1 and D2 sites, whereas those from non-catch muscles also expressed the D2 site, but some of them lacked the D1 site. This suggests that the D1 site of twitchin is essential to the mechanism of catch. Genomic DNA analysis revealed that twitchin isoforms are produced by alternative splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baguet F, Gillis JM. Energy cost of tonic contraction in a lamellibranch catch muscle. J. Physiol. 1968; 198: 127–143.

    PubMed  Google Scholar 

  2. Willman BM. Mechanism of contraction in molluscan muscle. Am. Zool. 1967; 7: 583–591.

    Google Scholar 

  3. Jewell BR. The nature of the phasic and the tonic responses of the anterior byssal retractor muscle of Mytilus. J. Physiol. 1959; 149: 154–177.

    PubMed  CAS  Google Scholar 

  4. Twarog BM. The regulation of catch in molluscan muscle. J. Gen. Physiol. 1967; 50: 57–69.

    Article  Google Scholar 

  5. Cole RA, Twarog BM. Relaxation of catch in a molluscan smooth muscle. I. Effects of drugs which act on the adenyl cyclase system. Comp. Biochem. Physiol. 1972; 43A: 321–330.

    Article  Google Scholar 

  6. Achazi RK, Dolling B, Haakshorst R. 5-Ht-induzierte Erschlaffung und cyclisches AMP bei einem glatten Molluskenmuskel. Pflugers Arch. 1974; 349: 19–27.

    Article  PubMed  CAS  Google Scholar 

  7. Pfitzer G, Ruegg JC. Molluscan catch muscle: regulation and mechanics in living and skinned anterior byssus retractor muscle of Mytilus edulis. J. Comp. Physiol. 1982; 147: 137–142.

    CAS  Google Scholar 

  8. Castellani L, Cohen C. Myosin rod phosphorylation and the catch state of molluscan muscles. Science 1987; 235: 334–337.

    Article  PubMed  CAS  Google Scholar 

  9. Sohma H, Yazawa M, Morita F. Phosphorylation of regulatory light chain a (RLC-a) in smooth muscle myosin of scallop, Patinopecten yessoensis. J. Biochem. 1985; 98: 569–572.

    PubMed  CAS  Google Scholar 

  10. Sohma H, Inoue K, Morita F. A cAMP-dependent regulatory protein of RLC-a myosin kinase catalyzing the phosphorylation of scallop smooth muscle myosin light chain. J. Biochem. 1988; 103: 431–435.

    PubMed  CAS  Google Scholar 

  11. Sohma H, Sasada H, Inoue K, Morita F. Regulatory light chain-a myosin kinase (aMK) catalyzes phosphorylation of smooth muscle myosin heavy chains of scallop, Patinopecten yessoensis. J. Biochem. 1988; 104: 889–893.

    PubMed  CAS  Google Scholar 

  12. Achazi RK. Phosphorylation of molluscan paramyosin. Pflugers Arch. 1979; 379: 197–201.

    Article  PubMed  CAS  Google Scholar 

  13. Watabe S, Hartshorne DJ. Phosphorylation of paramyosin. Comp. Biochem. Physiol. 1989; 94B: 813–821.

    CAS  Google Scholar 

  14. Siegman MJ, Mooers SU, Li C, Narayan S, Trinkle-Mulcahy L, Watabe S, Hartshorne DJ, Butler TM. Phosphorylation of a high molecular weight (−600 kDa) protein regulates catch in invertebrate smooth muscle. J. Muscle Res. Cell Motil. 1997; 18: 655–670.

    Article  PubMed  CAS  Google Scholar 

  15. Vibert P, Edelstein SM, Castellani L, Elliott BW Jr. Minititins in striated and smooth molluscan muscles: structure, location and immunological crossreactivity. J. Muscle Res. Cell Motil. 1993; 14: 598–607.

    Article  PubMed  CAS  Google Scholar 

  16. Siegman MJ, Funabara D, Kinoshita S, Watabe S, Hartshorne DJ, Butler TM. Phosphorylation of a twitchinrelated protein controls catch and calcium sensitivity of force production in invertebrate smooth muscle. Proc. Natl. Acad. Sci. USA 1998; 95: 5383–5388.

    Article  PubMed  CAS  Google Scholar 

  17. Funabara D, Watabe S, Mooers SU, Naravan S, Dudas C, Hartshorne DJ, Siegman MJ, Butler TM. Twitchin from molluscan catch muscle: primary structure and relationship between site-specific phosphorylation and mechanical function. J. Biol. Chem. 2003; 278: 29308–29316.

    Article  PubMed  CAS  Google Scholar 

  18. Funabara D, Kinoshita S, Watabe S, Siegman MJ, Butler TM, Hartshorne DJ. Phosphorylation of molluscan twitchin by the cAMP-dependent protein kinase. Biochemistry 2001; 40: 2087–2095.

    Article  PubMed  CAS  Google Scholar 

  19. Benian GM, Kiff JE, Neckelmann N, Moerman DG, Waterston RH. Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature 1989; 342: 45–50.

    Article  PubMed  CAS  Google Scholar 

  20. Benian GM, L’Hernault SW, Morris ME. Additional sequence complexity in the muscle gene, unc-22, and its encoded protein, twitchin, of Caenorhabditis elegans. Genetics 1993; 134: 1097–1104.

    PubMed  CAS  Google Scholar 

  21. Granzier H, Wu Y, Siegfried L, LeWinter M. Titin: physiological function and role in cardiomyopathy and failure. Heart Fail. Rev. 2005; 10: 211–223.

    Article  PubMed  Google Scholar 

  22. Labeit S, Barlow DP, Gautel M, Gibson T, Holt J, Hsieh CL, Francke U, Leonard K, Wardale J, Whiting A, Trinick J. A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 1990; 345: 273–276.

    Article  PubMed  CAS  Google Scholar 

  23. Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 1995; 270: 293–296.

    Article  PubMed  CAS  Google Scholar 

  24. Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H, Labeit S. Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ. Res. 2000; 86: 1114–1121.

    PubMed  CAS  Google Scholar 

  25. Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to 1-band linking system. Circ. Res. 2001; 89: 1065–1072.

    Article  PubMed  CAS  Google Scholar 

  26. Saide JD. Identification of a connecting filament protein in insect fibrillar flight muscle. J. Mol. Biol 1981; 153: 661–679.

    Article  PubMed  CAS  Google Scholar 

  27. Saide JD, Chin-Bow S, Hogan-Sheldon J, Busquets-Turner L, Vigoreaux JO, Valgeirsdottir K, Pardue ML. Characterization of components of Z-bands in the fibrillar flight muscle of Drosophila melanogaster. J. Cell Biol 1989; 109: 2157–2167.

    Article  PubMed  CAS  Google Scholar 

  28. Lakey A, Ferguson C, Labeit S, Reedy M, Larkins A, Butcher G, Leonard K, Bullard B. Identification and localization of high molecular weight proteins in insect flight and leg muscle. EMBO J. 1990; 9: 3459–3467.

    PubMed  CAS  Google Scholar 

  29. Hu DH, Matsuno A, Terakado K, Matsuura T, Kimura S, Maruyama K. Projectin is an invertebrate connectin (titin): isolation from crayfish claw muscle and localization in crayfish claw muscle and insect flight muscle. J. Muscle Res. Cell Motil. 1990; 11: 497–511.

    Article  PubMed  CAS  Google Scholar 

  30. Oshino T, Shimamura J, Fukuzawa A, Maruyama K, Kimura S. The entire cDNA sequences of projectin isoforms of cray-fish claw closer and flexor muscles and their localization. J. Muscle Res. Cell Motil. 2003; 24: 431–438.

    Article  PubMed  CAS  Google Scholar 

  31. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998; 8: 175–185.

    PubMed  CAS  Google Scholar 

  32. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998; 8: 186–194.

    PubMed  CAS  Google Scholar 

  33. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res. 1998; 8: 195–202.

    PubMed  CAS  Google Scholar 

  34. Lopez AJ. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu. Rev. Genet. 1998; 32: 279–305.

    Article  PubMed  CAS  Google Scholar 

  35. Seeley M, Huang W, Chen Z, Wolff WO, Lin X, Xu X. Depletion of zebrafish titin reduces cardiac contractility by disrupting the assembly of Z-discs and A-bands. Circ. Res. 2007; 100: 238–245.

    Article  PubMed  CAS  Google Scholar 

  36. Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B, Gautel M. The kinase domain of titin controls muscle gene expression and protein turnover. Science 2005; 308: 1599–1603.

    Article  PubMed  CAS  Google Scholar 

  37. Greaser ML, Berri M, Warren CM, Mozdziak PE. Species variations in cDNA sequence and exon splicing patterns in the extensible I-band region of cardiac titin: relation to passive tension. J. Muscle Res. Cell Motil. 2002; 23: 473–482.

    Article  PubMed  Google Scholar 

  38. Pena JR, Wolska BM. Troponin I phosphorylation plays an important role in the relaxant effect of beta-adrenergic stimulation in mouse hearts. Cardiovasc. Res. 2004; 61: 756–763.

    Article  PubMed  CAS  Google Scholar 

  39. Fougerousse F, Delezoide AL, Fiszman MY, Schwartz K, Beckmann JS, Carrier L. Cardiac myosin binding protein C gene is specifically expressed in heart during murine and human development. Circ. Res. 1998; 82: 130–133.

    PubMed  CAS  Google Scholar 

  40. Gautel M, Furst DO, Cocco A, Schiaffino S. Isoform transitions of the myosin binding protein C family in developing human and mouse muscles: lack of isoform transcomplementation in cardiac muscle. Circ. Res. 1998; 82: 124–129.

    PubMed  CAS  Google Scholar 

  41. Yamasaki R, Wu Y, McNabb M, Greaser M, Labeit S, Granzier H. Protein kinase A phosphorylates titin’s cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ. Res. 2002; 90: 1181–1188.

    Article  PubMed  CAS  Google Scholar 

  42. Lissandron V, Zaccolo M. Compartmentalized cAMP/PKA signalling regulates cardiac excitation-contraction coupling. J. Muscle Res. Cell Motil. 2006; 27: 399–403.

    Article  PubMed  CAS  Google Scholar 

  43. Kunst G, Kress KR, Gruen M, Uttenweiler D, Gautel M, Fink RH. Myosin binding protein C, a phosphorylation-dependent force regulator in muscle that controls the attachment of myosin heads by its interaction with myosin S2. Circ. Res. 2000; 86: 51–58.

    PubMed  CAS  Google Scholar 

  44. Kruger M, Linke WA. Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J. Muscle Res. Cell Motil. 2006; 27: 435–444.

    Article  PubMed  Google Scholar 

  45. Funabara D, Hamamoto C, Yamamoto K, Inoue A, Ueda M, Osawa R, Kanoh S, Hartshorne DJ, Suzuki S, Watabe S. Unphosphorylated twitchin forms a complex with actin and myosin that may contribute to tension maintenance in catch. J. Exp. Biol. 2007; 210: 4399–4410.

    Article  PubMed  CAS  Google Scholar 

  46. Tsutsui Y, Yoshio M, Oiwa K, Yamada A. Striated muscle twitchin of bivalves has ‘catchability’, the ability to bind thick filaments tightly to thin filaments, representing the catch state. J. Mol. Biol. 2007; 365: 325–332.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shugo Watabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusaka, M., Ikeda, D., Funabara, D. et al. The occurrence of tissue-specific twitchin isoforms in the mussel Mytilus galloprovincialis . Fish Sci 74, 677–686 (2008). https://doi.org/10.1111/j.1444-2906.2008.01574.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2008.01574.x

Key words

Navigation