Skip to main content
Log in

Micropropagation of juvenile tissue of Eucalyptus erythronema × eucalyptus stricklandii cv. ‘urrbrae gem’

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Micropropagation via enhanced axillary shoot proliferation was investigated in the ornamental Eucalyptus cv. ‘Urrbrae Gem’ using in vitro germinated seedlings and was successfully achieved using woody plant medium (WPM) supplemented with 2.2 μM benzylaminopurine, 1.0 μM α-naphthaleneacetic acid, and 1.5 μM gibberellic acid (GA3), gelled with 5 g l−1 Phytagel®. Shoot proliferation was greater on WPM and QL media with GA3 compared to B5, AP, and TK media with or without GA3. GA3 was required for shoot elongation as the internodes were otherwise very short and unsuitable for multiplication or root initiation. Root initiation was improved using (1/2) WPM supplemented with 20 μM indole-3-butyric acid (IBA) over a 7 d pulse, followed by subculture to IBA-free medium, compared to placing shoots on low levels of IBA for 4–6 wk. Plantlets were successfully hardened off to the natural environment via a fogger at 67% relative, humidity at 21°C for 3 d and continued to thrive as potted plants. This is the first report of successful, micropropagation in an ornamental eucalypt (subgenus Symphyomyrtus) from seedling explants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almehdli, A. A.; Parfitt, D. E. In vitro, propagation of peach: 1. Propagation of ‘Lovell’ and ‘Nemguard’ peach rootstocks. Fruit Var. J. 40:12–17; 1986.

    Google Scholar 

  • Bennett, I. J.; McDavid, D.; McComb, J. A. The influence of ammonium nitrate, pH and indole butyric acid on root induction and survival in soil of micropropagated Eucalyptus globules. Biol. Plant 47:355–360; 2003.

    Article  CAS  Google Scholar 

  • Curir, P.; Van Sumere, C. F.; Termini, A.; Barthe, P.; Marchesini, A.; Dolci, M. Flavoniod accumulation is correlated with adventitious roots formation in Eucalyptus gunnii Hook micropropagated through axillary bud stimulation. Plant Physiol. 92:1148–1153; 1990.

    Article  PubMed  CAS  Google Scholar 

  • de Fossard, R. A. Tissue culture for plant propagators, 2nd edn. Armidale, NSW: University of New England Press; 1983.

    Google Scholar 

  • de Fossard, R. A.; Bennett, M. T.; Gorst, J. R.; Bourne, R. A. Tissue propagation of Eucalyptus ficifolia F. Muell. Comb. Proc. Int. Plant Prop. Soc. 28:427–435; 1978.

    Google Scholar 

  • Delaporte, K.; Collins, G. G.; Conran, J.; Sedgley, M. Molecular analysis of an inter-specific hybrid ornamental eucalypt for parental identification. Euphytica 122:165–170; 2001.

    Article  CAS  Google Scholar 

  • Delaporte, K.; Sedgley, M. Selection and breeding of eucalypts for ornamental horticulture. Acta Hort. 630:77–84; 2004.

    Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojma, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Glocke, P.; Collins, G.; Sedgley, M. In vitro organogenesis from seedling explants of the ornamentals Eucalyptus erythronema, E. stricklandii and the inter-specific hybrid E. erythronema × E. stricklandii cv. ‘Urrbrae Gem’., J. Hort. Sci. Biotechnol. 80:97–104; 2005.

    Google Scholar 

  • Gribble, K.; Conroy, P.; Holford, P.; Milham, P. In vitro uptake of minerals by Gypsophila paniculata and hybrid eucalypts, and relevance to media mineral formulation. Aust. J. Bot. 50:713–723; 2002.

    Article  CAS  Google Scholar 

  • Kelly, S. Eucalypts, vol. 1. Hong Kong: Dai Nippon Printing Co., 1969.

    Google Scholar 

  • Lainé, E.; David, A. Regeneration of plants from leaf explants of micropropagated clonal Eucalyptus grandis. Plant Cell Rep. 13:473–476; 1994.

    Article  Google Scholar 

  • Le Roux, J. J.; van Staden, J. Micropropagation and tissue culture of Eucalyptus–a review. Tree Physiol. 9:435–477; 1991.

    PubMed  Google Scholar 

  • Lloyd, G.; McCown, B. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Comb. Proc. Int. Plant Prop. Soc. 30:421–427; 1980.

    Google Scholar 

  • Louro, R.; Dos Santos, A.; Machado, R. D. Ultrastructure of Eucalyptus grandis × Eucalyptus urophylla. 1. Shoots cultivated in vitro in multiplication and elongation-rooting media. Int. J. Plant Sci. 160:217–227; 1999.

    Article  Google Scholar 

  • McComb, J. A.; Bennett, I. J.; Tonkin, C. In vitro propagation of Eucalyptus species. In: Taji, A.; Williams, R., eds. Tissue culture of Australian plants. Armidale, NSW: University of New England; 1996:112–156.

    Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Ostrowska, E.; Muralitharan, M.; Bassano, R. In vitro propagation conditions for Eucalyptus ficifolia and E. citriodora. Aust. Hort. 96:45–51; 1998.

    Google Scholar 

  • Quoirin, M.; Lepoivre, P. Improved medium for in vitro culture of Prunus sp. Acta Hort. 78:437–442; 1977.

    Google Scholar 

  • Schwambach, J.; Fadanelli, C.; Fett-Neto, A. G. Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globules. Tree Physiol. 25:487–494; 2005.

    PubMed  CAS  Google Scholar 

  • Sedgley, M.; Delaporte, K. Breeding of eucalypt bud and flower liens. Australian Capitol Territory: Rural Industries Research and Development Corporation; 2004.

    Google Scholar 

  • Sharma, S. K.; Ramamurthy, V. Micropropagation of 4-year-old elite Eucalyptus tereticornis trees. Plant Cell Rep. 19:511–518; 2000.

    Article  CAS  Google Scholar 

  • Sutter, E. G. General laboratory requirements, media and sterilization methods. In: Trigiano, R. N.; Gray, D. J., eds. Plant tissue culture concepts and laboratory exercises. New York: CRC Press; 1996:11–25.

    Google Scholar 

  • Tabachnik, L.; Kester, D. E. Shoot culture for almond and almond-peach hybrid clones in vitro. HortScience 12:545–547; 1977.

    Google Scholar 

  • Warrag, E. I.; Lesney, M. S.; Rockwood, D. L. Comparative greenhouse study of Eucalyptus grandis in vitro plantlets and half-sib seedlings, I. net photosynthesis. Plant Cell Rep. 8:479–499; 1989a.

    Article  Google Scholar 

  • Warrag, E. I.; Lesney, M. S.; Rockwood, D. L. Comparative greenhouse study of Eucalyptus grandis in vitro plantlets and half-sib seedlings, II. Net photosynthesis. Planrt Cell Rep. 8:500–503; 1989b.

    Article  Google Scholar 

  • Williams, R. R. Mineral nutrition in vitro—a mechanistic approach. Aust. J. Bot. 41:237–251; 1993.

    Article  CAS  Google Scholar 

  • Williams, R. R. In vitro ecology—see the light, raise the temperature. In: Johnson, K. A.; McFarlane, I. J., eds. Plant tissue culture at the edge of the new millennium. Proceedings of the International Association for Plant Tissue Culture and Biotechnology (Australian Branch) Sixth National Meeting, Sydney; 1999:40–52.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sedgley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glocke, P., Delaporte, K., Collins, G. et al. Micropropagation of juvenile tissue of Eucalyptus erythronema × eucalyptus stricklandii cv. ‘urrbrae gem’. In Vitro Cell.Dev.Biol.-Plant 42, 139–143 (2006). https://doi.org/10.1079/IVP2005740

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2005740

Key words

Navigation