Skip to main content
Log in

The effects of reduced and oxidized glutathione on white spruce somatic embryogenesis

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

The glutathione-glutathione disulfide redox pair was utilized to improve white spurce somatic embryo development. Mature cotyledonary-stage somatic embryos were divided into two groups (A and B) based on morphological normality and the ability of the mature somatic embryos to convert into plantlets. Group A embryos had four or more cotyledons and converted readily upon germination after a partial drying treatment. Group B embryos had three or fewer cotyledons with a low conversion frequency. The addition of reduced glutathione (GSH) at a concentration of 0.1 mM resulted in an increase in embryo production (total population) with a mean total number of 64 embryos per 100 mg embryogenic tissue as well as an increase in post-embryonic root growth. However, at a higher concentration (1 mM), GSH inhibited embryo formation. The manipulation of the tissue culture environment via the inclusion of glutathione disulfide (GSSG), at concentrations of 0.1 and 1.0 mM, enhanced the development of better-quality embryos. This quality was best exemplified when embryos forming four or more cotyledons increased by at least twofold to 73.9% when treated with 1.0 mM GSSG, compared to 38% in control. Furthermore, this improved quality was reflected by an increased conversion frequency. A 20% increase in the ability of the somatic embryo to produce both root and shoot structures during post-embryonic development was noted when embryos were matured on maturation medium supplemented with 1.0 mM GSSG over the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attree, S. M.; Fowke, L. C. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss. Organ Cult. 35:1–35; 1993.

    Article  CAS  Google Scholar 

  • Belmonte, M.; Stasolla, C.; Loukanina, N.; Yeung, E. C.; Thorpe, T. A. Glutathione modulation of purine metabolism in cultured white spruce embryogenic tissue. Plant Science (in press); 2003.

  • Buchheim, J. A.; Colburn, S. M.; Ranch, J. P. Maturation of soybean somatic embryos and the transition to plantlet growth. Plant Physiol. 89:768–775; 1989.

    PubMed  Google Scholar 

  • Cheng, J.-C.; Seeley, K. A.; Sung, Z. R. RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol. 107:365–376; 1995.

    Article  PubMed  CAS  Google Scholar 

  • de Pinto, M. C.; Francis, D.; De Gara, L. The redox state of the ascorbatedehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209:90–97; 1999.

    Article  PubMed  Google Scholar 

  • Earnshaw, B. A.; Johnson, M. A. The effect of glutathione on development in wild carrot suspension cultures. Biochem. Biophys. Res. Commun. 133:988–993; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw, B. A.; Johnson, M. A. Control of wild carrot somatic embryo development by antioxidants. Plant Physiol. 85:273–276; 1987.

    PubMed  CAS  Google Scholar 

  • Fahey, R. C.; Di Stefano, D. L.; Meier, G. P.; Bryan, R. N. Role of hydration state and thiol-disulfide status in the control of thermal stability and protein synthesis in wheat embryo. Plant Physiol. 65:1062–1066; 1980.

    PubMed  CAS  Google Scholar 

  • Grossnickle, S. C. Ecophysiology of northern spurce species: the performance of planted seedlings. Ottawa: NRC Research Press; 2000.

    Google Scholar 

  • Hakman, I.; Fowke, L. C. Somatic embryogenesis in Picca glauca (white spruce) and Picea mariana (black spruce). Can. J. Bot. 65:656–659; 1987.

    Google Scholar 

  • Henmi, K.; Tsuboi, S.; Demura, T.; Fukuda, H.; Iwabuchi, M.; Ogawa, K. A possible role of glutathione and glutathione disulfide in tracheary element differentiation in the cultured mesophyll cells of Zinnia elegans. Plant Cell Physiol. 42:673–676; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Jain, S. M.; Newton, R. J.; Sopltes, E. J. Enhancement of somatic embryogenesis in Norway spruce (Picea abies L.). Theor. Appl. Genet. 76:501–506; 1988.

    Article  Google Scholar 

  • Kong, L.; Attree, S. M.; Evans, D. E.; Binarova, P.; Yeung, E. C.; Fowke, L. C. Somatic embryogenesis in white spruce: studies of embryo development and cell biology. In: Jain, S. M.; Gupta, P. K.; Newton, B. J., eds. Somatic embryogenesis in woody plants vol. 4. Dordrecht: Kluwer Academic Publishers; 1999:1–28.

    Google Scholar 

  • Kong, L.; Attree, S. M.; Fowke, L. C. Changes of endogenous hormone level in developing seeds, zygotic embryos, and megagametophytes in Picea glauca (Moench) Voss. Physiol. Plant. 101:23–30; 1997.

    Article  CAS  Google Scholar 

  • Kong, L.; Yeung, E. C. Development of white spruce somatic embryos: II. Continual shoot meristem development during germination. In Vitro Cell. Dev. Biol. Plant 28:125–131; 1992.

    Google Scholar 

  • Kranner, L.; Grill, D. Content of low-molecular-weight thiols during the imbibition of pea seeds. Physiol. Plant. 88:557–562; 1993.

    Article  CAS  Google Scholar 

  • Litvay, J. D.; Verma, D. C.; Johnson, M. A. Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep. 4:325–328; 1985.

    Article  CAS  Google Scholar 

  • Lu, C.-Y.; Thorpe, T. A. Somatic embryogenesis and plantlet regeneration in cultured immature embryos of Picea glauca. J. Plant Physiol. 128:297–302; 1987.

    CAS  Google Scholar 

  • Marre, E.; Arrigoni, O. Metabolic reactions to auxin: the effects of auxin on glutathione and the effects of glutathione on growth of isolated plant parts. Physiol. Plant. 10:289–301; 1957.

    Article  CAS  Google Scholar 

  • May, M. J.; Vernoux, T.; Leaver, C.; Van Montagu, M.; Inze, D. Glutathione homeostasis in plants: implication for environmental sensing and plant development. J. Exp. Bot. 49:649–667; 1998.

    Article  CAS  Google Scholar 

  • Nocter, G.; Foyer, C. H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:249–279; 1998.

    Article  Google Scholar 

  • Ogawa, K.; Tasaka, Y.; Mino, M.; Tanaka, T.; Iwabuchi, M. Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiol. 42:524–530; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Potters, G.; De Gara, L.; Asard, H.; Horemans, N. Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol. Biochem. 40:537–548; 2002.

    Article  CAS  Google Scholar 

  • Roberts, D. R.; Sutton, B. C. S.; Flinn, B. S. Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can. J. Bot. 68:1086–1090; 1990.

    Google Scholar 

  • Sanchez-Fernandez, R.; Fricker, M.; Corben, L. B.; White, N. S.; Sheard, N.; Leaver, C. J.; Van Montagu, M.; Inze, D.; May, M. J. Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc. Natl Acad. Sci. USA 94:2745–2750; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Stasolla, C.; Yeung, E. C. Ascorbic acid improves conversion of white spruce somatic embryos. In Vitro Cell. Dev. Biol. Plant 35:316–319; 1999.

    CAS  Google Scholar 

  • Suhasini, K.; Sagare, A. P.; Krishnamurthy, K. V. Study of aberrant morphology and lack of conversion of somatic embryos of chickpea (Cicer arietinum L.). In Vitro Cell. Dev. Biol. Plant 32:6–10; 1996.

    Article  Google Scholar 

  • Tommasi, F.; Paciolla, C.; de Pinto, M. C.; De Gara, L. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinca L. seeds. J. Exp. Bot. 362:1647–1654; 2001.

    Article  Google Scholar 

  • Vernoux, T.; Wilson, R. C.; Seeley, K. A.; Reichheld, P.-P.; Muroy, S.; Brown, S.; Maughan, S. C.; Cebbott, C. S.; Van Montagu, M.; Inze, D.; May, M. J.; Sung, Z. R. The ROOT MERISTEMLESS/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–109; 2000.

    Article  PubMed  CAS  Google Scholar 

  • von Aderkas, P. In vitro phenotypic variation in larch cotyledon number. Int. J. Plant Sci. 123:301–307; 2002.

    Article  Google Scholar 

  • Yeung, E. C. Structural and developmental patterns in somatic embryogenesis. In: Thorpe, T. A., ed. In vitro embryogenesis in plants. Dordrecht: Kluwer Academic Publishers; 1995:205–247.

    Google Scholar 

  • Yeung, E. C.; Stasolla, C. Somatic embryogenesis—apical meristems and embryo conversion. Korean. J. Plant Tiss. Cult. 27:299–307; 2000.

    Google Scholar 

  • Zellnig, G.; Tausz, M.; Pesec, B.; Muller, M. Effects of glutathione on thiol redox systems, chromosomal aberrations, and the ultrastructure of meristematic root cells of Picea abies (L.) Karst. Protoplasma 212:227–235; 2000.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Yeung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belmonte, M.F., Yeung, E.C. The effects of reduced and oxidized glutathione on white spruce somatic embryogenesis. In Vitro Cell.Dev.Biol.-Plant 40, 61–66 (2004). https://doi.org/10.1079/IVP2003483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2003483

Key words

Navigation