Advertisement

Dairy Science & Technology

, Volume 88, Issue 6, pp 695–705 | Cite as

Characterization of probiotic properties of Lactobacillus strains

  • Mathieu Millette
  • François-Marie Luquet
  • Marcia Teresa Ruiz
  • Monique LacroixEmail author
Note

Abstract

The objectives of this study were to demonstrate the gastro-intestinal tolerance and the capacity to modulate the intestinal microbiota of some Lactobacillus acidophilus, L. casei and L. rhamnosus strains with high probiotic potential. L. acidophilus and L. casei mixture that is used to produce probiotic fermented milk has been evaluated for its acid resistance and bile salts tolerance and compared to other lactic acid bacteria (LAB). The commercial culture and the three strains of L. rhamnosus exhibited complete tolerance to acid for pH ≥ 2.5. The minimal inhibitory concentration of the bile salts mixture was 50 g·L−1 for all bacteria. The impact of the ingestion of the novel probiotic on the fecal microbiota was evaluated in vivo using healthy C57B1/6 mice. Fecal samples were analyzed for the microbiota enumeration using selective plating. Fecal analysis showed an increase of total culturable LAB and a decrease in Staphylococcus spp. population in the LAB-treated mice indicating that these cultures could improve the intestinal health. Also, reduction in fecal Enterobacteriaceae was noticed following mice gavage with L. rhamnosus ATCC 9595 while a higher enumeration was measured for L. rhamnosus RW-9595M, an exopolysaccharideoverproducing mutant. These contradictory results were discussed.

probiotic Lactobacillus antimicrobial gastrointestinal 

Caractérisation de propriétés probiotiques de souches de Lactobacillus

Résumé

Les objectifs de cette étude consistaient à démontrer la survie gastro-intestinale et la capacité à moduler le microbiote intestinal de souches de Lactobacillus acidophilus, L. casei et L. rhamnosus présentant un fort potentiel probiotique. La résistance gastrique et aux sels biliaires d’un mélange composé de L. acidophilus et L. casei, utilisé comme ferment pour produire un lait fermenté probiotique, a été évaluée et comparée à d’autres bactéries lactiques. La culture commerciale et trois souches de L. rhamnosus ont montré une résistance complète à un pH ≥ 2,5. La concentration minimale inhibitrice de sels biliaires était de 50 g·L−1 pour toutes les bactéries. Limpact de l’ingestion du probiotique nouveau sur le microbiote fécal a été évalué in vivo sur des souris C57B1/6 saines. Le dénombrement du microbiote intestinal a été effectué dans des échantillons de fèces par l’utilisation de géloses sélectives. Les analyses fécales ont montré une augmentation des bactéries lactiques to tales cultivables et une diminution de la population de Staphylococcus spp. chez les souris traitées avec les bactéries lactiques indiquant que ces cultures pourraient améliorer la santé intestinale. De plus, une diminution des Enterobacteriaceae fécales a été remarquée suite au gavage avec L. rhamnosus ATCC 9595 tandis qu’un dénombrement plus élevé a été mesuré avec L. rhamnosus RW-9595M, un mutant qui surproduit des exopolysaccharides. Ces résultats contradictoires ont été discutés.

probiotique Lactobacillus antimicrobien gastro-intestinal 

Abstract

pH ≥ 2.5 50 g·L−1. C57B1/6 ATCC 9595 RW-9595M

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beausoleil M., Fortier N., Guénette S., L’Écuyer A., Savoie M., Franco M., Lachaîne J., Weiss K., Effect of a fermented milk combining Lactobacillus acidophilus CL1285 and Lactobacillus casei in the prevention of antibiotic-associated diarrhea: a randomized, double-blind, placebocontrolled trial, Can. J. GastroenteroL. 21 (2007) 732–736.Google Scholar
  2. [2]
    Casey P.G., Casey G.D., Gardiner G.E., Tangney M., Stanton C., Ross R.P., Hill C., Fitzgerald G.F., Isolation and characterization of anti-Salmonella lactic acid bacteria from the porcine gastrointestinal tract, Lett. AppL. Microbiol. 39 (2004) 431–438.CrossRefGoogle Scholar
  3. [3]
    Cinquin C., Le Blay G., Fliss I., Lacroix C., Comparative effects of exopolysaccharides from lactic acid bacteria and fructooligosaccharides on infant gut microbiota tested in an in vitro colonic model with immobilized cells, FEMS Microbiol. Ecol. 57 (2006) 226–238.CrossRefGoogle Scholar
  4. [4]
    Charteris W.P., Kelly P.M., Morelli L., Collins J.K., Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract, J. Appl. Microbiol. 84 (1998) 759–768.CrossRefGoogle Scholar
  5. [5]
    FAO/WHO experts, Probiotics in food: health and nutritional properties and guidelines for evaluation, World Health Organization and Agricultural Organization of the United Nations, Rome, Italia, 2006.Google Scholar
  6. [6]
    Grill J.P., Manginot-Dürr C., Schneider F., Ballongue J., Bifidobacteria and probiotic effects: action of Bifidobacterium species on conjugated bile salts, Current Microbiol. 31 (1995) 23–27.CrossRefGoogle Scholar
  7. [7]
    Hartemink R., Rombouts F.M., Comparison of media for the detection of bifidobacteria, lactobacilli, and total anaerobes from faecal samples, J. Microbiol. Methods 36 (1999) 181–192.CrossRefGoogle Scholar
  8. [8]
    Jackson M.S., Bird A.R., McOrist A.L., Comparison of two selective media for the detection and enumeration of Lactobacilli in human faeces, J. Microbiol. Methods 51 (2002) 313–321.CrossRefGoogle Scholar
  9. [9]
    Kallman J., Kihlstrom E., Sjoberg L., Schollin J., Increase of staphylococci in neonatal septicaemia: a fourteen-year study, Acta Paediatr. 86 (1997) 533–538.CrossRefGoogle Scholar
  10. [10]
    Klainer A.S., Gorbach S., Weinstein L., Studies of intestinal microflora. VI. Effect of X irradiation on the fecal microflora of the rat, J. Bacteriol. 94 (1967) 378–382.Google Scholar
  11. [11]
    Le Tien C., Millette M., Mateescu M.A., Lacroix M., Modified alginate and chitosan for lactic acid bacteria immobilization, Biotechnol. Appl. Biochem. 39 (2004) 347–354.CrossRefGoogle Scholar
  12. [12]
    Loones A., Laits fermentés par les bactéries lactiques, in: De Roissart H., Luquet F.M. (Eds.), Bactéries Lactiques, vol. II, Lorica, Paris, France, 1994, pp. 135–154.Google Scholar
  13. [13]
    Luquet F.M., Corrieu G., Bactéries Lactiques et Probiotiques, Tec & Doc Lavoisier, Paris, France, 2005.Google Scholar
  14. [14]
    Mack D.R., Michail S., Wei S., McDougall L., Hollingsworth M.A., Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression, Am. J. Physiol. 276 (1999) G941-G950.Google Scholar
  15. [15]
    Manninen T.J.K., Rinkinen M.L., Beasley S.S., Saris P.E.J., Alteration of the canine small-intestinal lactic acid bacterium microbiota by feeding of potential probiotics, Appl. Environ. Microbiol. 72 (2006) 6539–6543.CrossRefGoogle Scholar
  16. [16]
    Marteau P.R., de Vrese M., Cellier C.J., Schrezenmeir J., Protection from gastrointestinal diseases with the use of probiotics, Am. J. Clin. Nutr. 73 (2001) 430S-436S.Google Scholar
  17. [17]
    Marzotto M., Maffeis C., Paternoster T., Ferrario R., Rizzotti L., Pellegrino M., Dellaglio F., Torriani S., Lactobacillus paracasei survives gastrointestinal passage and affects the fecal microbiota of healthy infants, Res. Microbiol. 157 (2006) 857–866.CrossRefGoogle Scholar
  18. [18]
    Mohan R., Koebnick C., Schildt J., Schmidt S., Mueller M., Possner M., Radke M., Blaut M., Effects of Bifidobacterium lactis Bb12 supplementation on intestinal microbiota of preterm infants: a double-blind, placebo-controlled, randomized study, J. Clin. Microbiol. 44 (2006) 4025–4031.CrossRefGoogle Scholar
  19. [19]
    Rastall R.A., Gibson G.R., Gill H.S., Guarner F., Klaenhammer T.R., Pot B., Reid G., Rowland I.R., Sanders M.E., Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications, FEMS Microbiol. Ecol. 52 (2005) 145–152.CrossRefGoogle Scholar
  20. [20]
    Saarela M., Morgensen G., Fondén R., Mättö J., Mattila-Sandholm T., Probiotic bacteria: safety, functional and technological properties, J. Biotechnol. 84 (2000) 197–215.CrossRefGoogle Scholar
  21. [21]
    Succi M., Tremonte P., Reale A., Sorrentino E., Grazia L., Pacifico S., Coppola R., Bile salts and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese, FEMS Microbiol. Let. 244 (2005) 129–137.CrossRefGoogle Scholar
  22. [22]
    Tannock G.W., Munro K., Harmsen H.J.M., Welling G.W., Smart J., Gopal P.K., Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20, Appl. Environ. Microbiol. 66 (2000) 2578–2588.CrossRefGoogle Scholar
  23. [23]
    Vanhoutte T., De Preter V., De Brandt E., Verbeke K., Swings J., Huys G., Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii, Appl. Environ. Microbiol. 72 (2006) 5990–5997.CrossRefGoogle Scholar
  24. [24]
    Zoetendal E.G., Akkermans A.D., De Vos W.M., Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria, Appl. Environ. Microbiol. 64 (1998) 3854–3859.Google Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Mathieu Millette
    • 1
  • François-Marie Luquet
    • 2
  • Marcia Teresa Ruiz
    • 2
  • Monique Lacroix
    • 1
    Email author
  1. 1.Research Laboratories in Sciences Applied to Food, Canadian Irradiation CenterINRS-Institut Armand-FrappierLavalCanada
  2. 2.Bio-K+ International Inc.LavalCanada

Personalised recommendations