Skip to main content
Log in

Temperature effect on the bioluminescence spectra of firefly luciferases: potential applicability for ratiometric biosensing of temperature and pH

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bioluminescence spectra of firefly luciferases are affected by pH, heavy metals and high temperatures. Previously, we compared the effect of pH and heavy metals on the bioluminescence spectra of different firefly luciferases and showed that such spectral sensitivity can be harnessed to ratiometrically estimate the pH inside cells and metal concentration. Here, we compared the effect of temperature on the spectral sensitivity of four firefly luciferases (Amydetes vivianii: 539 nm; Cratomorphus distinctus: 548 nm; Photinus pyralis: 558 nm and Macrolampis sp2: 594 nm) and investigated whether a ratiometric curve could be used to estimate temperature. The ratio of intensities of bioluminescence at two wavelengths (green and red) at different temperatures (5–35 °C) was determined. The results confirm that, in the case of pH-sensitive luciferases, the more blue-shifted the bioluminescence spectrum, the more thermostable the enzyme and the less sensitive the emission spectrum to temperature. An almost linear relationship between temperature and the ratio of bioluminescence intensities in the green and red region of the spectrum was found for the four luciferases: the more blue-shifted and less sensitive luciferases exhibit a smaller slope and the more red-shifted luciferases exhibit a steeper slope in the following order: Amy < Crt < Ppy < Mac. This relationship offers the possibility of using firefly luciferases as ratiometric indicators of temperature and may allow the compensation of the effect of temperature in the ratiometric analysis of intracellular pH and heavy metal concentration for each enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Hastings, J. Mol. Evol., 1983, 19, 309–321.

    Article  CAS  Google Scholar 

  2. V. R. Viviani, Cell. Mol. Life Sci., 2002, 59, 1833–1850.

    CAS  Google Scholar 

  3. V. R. Viviani and Y. Ohmiya, Photoprot. Bioanal, Wiley- VCH., Darmstadt, 2006, pp. 49–63.

  4. T. Wilson and J. W. Hastings, Annu. Rev. Cell Dev. Biol., 1998, 14, 197–230.

    Article  CAS  Google Scholar 

  5. K. V. Wood, Photochem. Photobiol., 1995, 62, 662–673.

    Article  CAS  Google Scholar 

  6. V. R. Viviani, F. G. C. Arnoldi, A. J. S. Neto, T. L. Oehlmeyer, E. J. H. Bechara and Y. Ohmiya, Photochem. Photobiol. Sci., 2008, 7, 159–169.

    CAS  Google Scholar 

  7. N. N. Ugarova and L. Y. Brovko, Luminescence, 2002, 17, 321–330.

    Article  CAS  Google Scholar 

  8. V. R. Viviani, E. J. H. Bechara and Y. Ohmiya, Biochemistry, 1999, 38, 8271–8279.

    Article  CAS  Google Scholar 

  9. V. R. Viviani, D. R. Neves, D. T. Amaral, R. A. Prado, T. Matsuhashi and T. Hirano, Biochemistry, 2014, 53, 5208–5220.

    Article  CAS  Google Scholar 

  10. B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, R. A. Magyar, S. A. Gonzalez, M. C. Ruggiero and J. G. Stroh, Biochemistry, 2004, 43, 7255–7262.

    Article  CAS  Google Scholar 

  11. B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, S. R. Wilkinson, N. F. Khattak, J. C. Rosenberg and M. Zimmer, Biochemistry, 2005, 44, 1385–1393.

    Article  CAS  Google Scholar 

  12. V. R. Viviani, A. Simões, V. R. Bevilaqua, G. V. M. Gabriel, F. G. C. Arnoldi and T. Hirano, Biochemistry, 2016, 55, 4764–4776.

    Article  CAS  Google Scholar 

  13. V. R. Viviani, G. V. M. Gabriel, V. R. Bevilaqua, A. F. Simões, T.Hirano and P. S. Lopes-de-Oliveira, Sci. Rep., 2018, 8, 17594.

    Article  Google Scholar 

  14. Y. Nakajima, T. Yamazaki, S. Nishii, T. Noguchi, H. Hoshino, K. Niwa, V. R. V. Viviani and Y. Ohmiya, PLoS One, 2010, 5, 100–111.

    Google Scholar 

  15. J. S. Pendergast, R. C. Friday and S. Yamazaki, PLoS One, 2010, 5, 1–7.

    Article  Google Scholar 

  16. H. Kwon, T. Enomoto, M. Shimogawara, K. Yasuda, Y. Nakajima and Y. Ohmiya, BioTechniques, 2010, 48, 460–462.

    Article  CAS  Google Scholar 

  17. A. Roda and M. Guardigli, Anal. Bioanal. Chem., 2012, 402, 69–76.

    Article  CAS  Google Scholar 

  18. S. Dorsaz, A. T. Coste and D. Sanglard, Front. Microbiol., 2017, 8, 1478.

    Article  Google Scholar 

  19. Y. Nakajima, T. Kimura, K. Sugata, T. Enomoto, A. Asawaka, H. Kubota, M. Ikeda and Y. Ohmiya, BioTechniques, 2005, 38, 891–894.

    Article  CAS  Google Scholar 

  20. V. R. Viviani, F. G. Arnoldi, B. Venkatesh, A. J. Neto, F. G. Ogawa, A. T. Oehlmeyer and Y. Ohmiya, J. Biochem., 2006, 140, 467–474.

    Article  CAS  Google Scholar 

  21. G. V. M. Gabriel, P. S. Lopes and V. R. Viviani, Anal. Biochem., 2014, 445, 72–78.

    Article  Google Scholar 

  22. G. V. M. Gabriel and V. R. Viviani, Photochem. Photobiol. Sci., 2014, 13, 1661–1670.

    CAS  Google Scholar 

  23. G. V. M. Gabriel and R. V. Viviani, Anal. Bioanal. Chem., 2016, 408, 8881–8893.

    Article  CAS  Google Scholar 

  24. W. D. McElroy and M. DeLuca, Biolumin. Action, 1978, 109.

  25. H. H. Seliger and W. D. McElroy, Proc. Natl. Acad. Sci. U. S. A., 1964, 52, 75–81.

    Article  CAS  Google Scholar 

  26. V. R. Viviani, T. L. Oehlmeyer, F. G. C. Arnoldi and M. R. Brochetto-Braga, Photochem. Photobiol. Sci., 2005, 81, 843–848.

    Article  CAS  Google Scholar 

  27. V. R. Viviani, F. G. Arnoldi, M. Brochetto-Braga and Y. Ohmiya, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2004, 139, 151–156.

    CAS  Google Scholar 

  28. V. R. Viviani, D. Amaral, R. Prado and F. G. C. Arnoldi, Photochem. Photobiol., 2011, 10, 1879.

    Article  CAS  Google Scholar 

  29. Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya andH. Akiyama, Nature, 2008, 2, 44–47.

    CAS  Google Scholar 

  30. K. Niwa, Y. Ichino, S. Kumata, Y. Nakajima, Y. Hiraishi, D. Kato, V. R. Viviani and Y. Ohmiya, Photochem. Photobiol., 2010, 86, 1046–1049.

    Article  CAS  Google Scholar 

  31. B. A. Sherf, S. L. Navarro, R. R. Hannah and K. V. Wood, Promega Notes Magazine, 1996, 57, 2.

    Google Scholar 

  32. G. Oliveira and V. R. Viviani, Luminescence, 2017, 33, 282–288.

    Article  Google Scholar 

  33. T. Nakatsu, S. Ichiyama, J. Hiratake, A. Saldanha, N. Kobashi, K. Sakata and H. Kato, Nature, 2006, 16, 372–376.

    Article  Google Scholar 

  34. G. V. M. Gabriel, R. Yasuno, Y. Mitani, Y. Ohmiya and V. R. Viviani, Photochem. Photobiol. Sci., 2019, 18, 1212–1217.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim R. Viviani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, G., Viviani, V.R. Temperature effect on the bioluminescence spectra of firefly luciferases: potential applicability for ratiometric biosensing of temperature and pH. Photochem Photobiol Sci 18, 2682–2687 (2019). https://doi.org/10.1039/c9pp00257j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00257j

Navigation