Skip to main content
Log in

Mono- and di-nuclear Re(i) complexes and the role of protonable nitrogen atoms in quenching emission by hydroquinone

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Mono-nuclear fac-[Re(CO)3(ph2phen)(4,4′-bpy)]+ and di-nuclear [(ph2phen)(CO)3Re(4,4′-bpy)Re(ph2phen)(CO)3]2+ complexes, ph2phen = 4,7-diphenyl-1,10-phenanthroline and 4,4′-bpy = 4,4′-bipyridine, were synthesized and characterized by 1H NMR, UV-visible and FT-IR spectroscopy. Also, their photophysical properties were investigated using steady-state and time-resolved emission spectroscopy. Both complexes showed UV absorption assigned to intraligand, 1ILph2phen, and metal-to-ligand charge transfer, 1MLCTRe→ph2phen, transitions, and typical 3MLCTRe→ph2phen emission (ϕ = 0.360 and τ = 3.81 μs; ϕ = 0.177 and τ = 1.90 μs for mono- and di-nuclear, respectively). Additionally, the luminescence of these complexes is quenched by hydroquinone with approximately 4 × 109 L mol−1 s−1 rate constant for the bimolecular excited state, kq. The Stern–Volmer constants, KSV, determined by the emission intensity and lifetime showed excellent correlation, which is indicative of the dynamic quenching. The similarity of the bimolecular rate constants between the two complexes implies that the photoinduced electron transfer is the main pathway with a very small (or no) influence of the proton transfer step. The results provide additional insight into the role of the protonable nitrogen atom in the photophysical properties of rhenium(i) complexes, using a dyad architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Mizoguchi, G. Santos, A. M. Andrade, F. J. Fonseca, L. Pereira, and N. Y. Murakami Iha, Luminous efficiency enhancement of PVK based OLEDs with fac-[ClRe(CO)3(bpy)], Synth. Met., 2011, 161, 1972–1975.

    Article  CAS  Google Scholar 

  2. M. R. Gonçalves, and K. P. M. Frin, Synthesis, characterization, photophysical and electrochemical properties of fac-tricarbonyl(4,7-dichloro-1,10-phenanthroline)rhenium(I) complexes, Polyhedron., 2015, 97, 112–117.

    Article  CAS  Google Scholar 

  3. P. Maity, T. Debnath, T. Banerjee, A. Das, and H. N. Ghosh, Charge Delocalization in the Cascade Band Structure CdS/CdSe and CdS/CdTe Core–Shell Sensitized with Re(I)–Polypyridyl Complex, J. Phys. Chem. C., 2016, 120, 10051–10061.

    Article  CAS  Google Scholar 

  4. S. T. Saad, A. J. Metherell, E. Baggaley, and M. D. Ward, Synthesis and photophysical properties of Ir(iii)/Re(i) dyads: control of Ir[rightward arrow]Re photoinduced energy transfer, Dalton Trans., 2016, 45, 11568–11579.

    Article  CAS  PubMed  Google Scholar 

  5. A. O. T. Patrocinio, K. P. M. Frin, and N. Y. Murakami Iha, Solid State Molecular Device Based on a Rhenium(I) Polypyridyl Complex Immobilized on TiO2 Films, Inorg. Chem., 2013, 52, 5889–5896.

    Article  CAS  PubMed  Google Scholar 

  6. A. Coleman, C. Brennan, J. G. Vos, and M. T. Pryce, Photophysical properties and applications of Re(I) and Re(I)–Ru(II) carbonyl polypyridyl complexes, Coord. Chem. Rev., 2008, 252, 2585–2595.

    Article  CAS  Google Scholar 

  7. C. Ci, J. J. Carbó, R. Neumann, C. d. Graaf, and J. M. Poblet, Photoreduction Mechanism of CO2 to CO Catalyzed by a Rhenium(I)–Polyoxometalate Hybrid Compound, ACS Catal., 2016, 6, 6422–6428.

    Article  CAS  Google Scholar 

  8. M. Pschenitza, S. Meister, A. von Weber, A. Kartouzian, U. Heiz, and B. Rieger, Suppression of Deactivation Processes in Photocatalytic Reduction of CO2 Using Pulsed Light, ChemCatChem., 2016, 8, 2688–2695.

    Article  CAS  Google Scholar 

  9. M. D. Ward, Metal-metal interactions in binuclear complexes exhibiting mixed valency; molecular wires and switches, Chem. Soc. Rev., 1995, 24, 121–134.

    Article  CAS  Google Scholar 

  10. S. S. Sun, and A. J. Lees, Transition metal based supramolecular systems: Synthesis, photophysics, photochemistry and their potential applications as luminescent anion chemosensors, Coord. Chem. Rev., 2002, 230, 171–192.

    Article  CAS  Google Scholar 

  11. S. Y. Reece, and D. G. Nocera, Direct Tyrosine Oxidation Using the MLCT Excited States of Rhenium Polypyridyl Complexes, J. Am. Chem. Soc., 2005, 127, 9448–9458.

    Article  CAS  PubMed  Google Scholar 

  12. D. J. Stewart, M. K. Brennaman, S. E. Bettis, L. Wang, R. A. Binstead, J. M. Papanikolas, and T. J. Meyer, Competing Pathways in the photo-Proton-Coupled Electron Transfer Reduction of fac-[Re(bpy)(CO)3(4,4′-bpy)]+* by Hydroquinone, J. Phys. Chem. Let., 2011, 2, 1844–1848.

    Article  CAS  Google Scholar 

  13. C. Bronner, and O. S. Wenger, Proton-Coupled Electron Transfer between 4-Cyanophenol and Photoexcited Rhenium(I) Complexes with Different Protonatable Sites, Inorg. Chem., 2012, 51, 8275–8283.

    Article  CAS  PubMed  Google Scholar 

  14. S. F. Sousa, R. N. Sampaio, N. M. Barbosa Neto, A. E. H. Machado, and A. O. T. Patrocinio, The photophysics of fac-[Re(CO)3(NN)(bpa)]+ complexes: a theoretical/experimental study, Photochem. Photobiol. Sci., 2014, 13, 1213–1224.

    Article  CAS  PubMed  Google Scholar 

  15. F. S. Prado, S. F. Sousa, A. E. H. Machado and A. O. T. Patrocinio, Influence of the Protonatable Site in the Photo-Induced Proton-Coupled Electron Transfer between Rhenium(I) Polypyridyl Complexes and Hydroquinone, J. Braz. Chem. Soc., 2017, Doi: 10.21577/20103-25053.20170022.

    Google Scholar 

  16. O. S. Wenger, Proton-coupled electron transfer with photoexcited ruthenium(II), rhenium(I), and iridium(III) complexes, Coord. Chem. Rev., 2015, 282–283, 150–158.

    Article  CAS  Google Scholar 

  17. O. S. Wenger, Proton-Coupled Electron Transfer with Photoexcited Metal Complexes, Acc. Chem. Res., 2013, 46, 1517–1526.

    Article  CAS  PubMed  Google Scholar 

  18. M. Kuss-Petermann, H. Wolf, D. Stalke, and O. S. Wenger, Influence of Donor–Acceptor Distance Variation on Photoinduced Electron and Proton Transfer in Rhenium(I)–Phenol Dyads, J. Am. Chem. Soc., 2012, 134, 12844–12854.

    Article  CAS  PubMed  Google Scholar 

  19. J. J. Concepcion, M. K. Brennaman, J. R. Deyton, N. V. Lebedeva, M. D. E. Forbes, J. M. Papanikolas, and T. J. Meyer, Excited-State Quenching by Proton-Coupled Electron Transfer, J. Am. Chem. Soc., 2007, 129, 6968–6969.

    Article  CAS  PubMed  Google Scholar 

  20. N. V. Lebedeva, R. D. Schmidt, J. J. Concepcion, M. K. Brennaman, I. N. Stanton, M. J. Therien, T. J. Meyer, and M. D. E. Forbes, Structural and pH Dependence of Excited State PCET Reactions Involving Reductive Quenching of the MLCT Excited State of [RuII(bpy)2(bpz)]2+ by Hydroquinones, J. Phys. Chem. A., 2011, 115, 3346–3356.

    Article  CAS  PubMed  Google Scholar 

  21. O. S. Wenger, Proton-Coupled Electron Transfer Originating from Excited States of Luminescent Transition-Metal Complexes, Chem.–Eur. J., 2011, 17, 11692–11702.

    Article  CAS  PubMed  Google Scholar 

  22. L. Troian-Gautier, E. Mugeniwabagara, L. Fusaro, C. Moucheron, A. Kirsch-De Mesmaeker, and M. Luhmer, pH Dependence of Photoinduced Electron Transfer with [Ru(TAP)3]2+, Inorg. Chem., 2017, 56, 1794–1803.

    Article  CAS  PubMed  Google Scholar 

  23. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, Singapore, 3rd edn, 2006.

    Book  Google Scholar 

  24. L. Sacksteder, A. P. Zipp, E. A. Brown, J. Streich, J. N. Demas, and B. A. Degraff, Luminescence Studies of Pyridine Alpha-Diimine Rhenium(I) Tricarbonyl Complexes, Inorg. Chem., 1990, 29, 4335–4340.

    Article  CAS  Google Scholar 

  25. H. Hori, J. Ishihara, K. Koike, K. Takeuchi, T. Ibusuki, and O. Ishitani, Photocatalytic reduction of carbon dioxide using fac-[Re(bpy)(CO)3(4-Xpy)]+ (Xpy=pyridine derivatives), J. Photochem. Photobiol., A., 1999, 120, 119–124.

    Article  CAS  Google Scholar 

  26. L. R. F. Allen, and J. Bard, Electrochemical Methods: Fundamentals and Applications, John Wiley and Sons, Inc., New York, 2nd edn, 2001.

    Google Scholar 

  27. K. M. Frin, and N. Y. M. Iha, Photoinduced isomerization and luminescence of fac-[Re(CO)3(ph2phen)(bpe)]+, J. Braz. Chem. Soc., 2006, 17, 1664–1671.

    Article  CAS  Google Scholar 

  28. K. P. M. Frin, and V. M. Nascimento, Rhenium(I) Polypyridine Complexes as Luminescence-Based Sensors for the BSA Protein, J. Braz. Chem. Soc., 2016, 27, 179–185.

    CAS  Google Scholar 

  29. M. K. Itokazu, A. S. Polo, D. L. A. de Faria, C. A. Bignozzi, and N. Y. M. Iha, Syntheses and spectroscopic characterization of fac-[Re(CO)3(phen)(L)]PF6, L=trans- and cis-1,2-bis(4-pyridyl)ethylene, Inorg. Chim. Acta., 2001, 313, 149–155.

    Article  CAS  Google Scholar 

  30. M. K. Itokazu, A. S. Polo, and N. Y. Murakami Iha, Luminescent rigidochromism of fac-[Re(CO)3(phen)(cis-bpe)]+ and its binuclear complex as photosensors, J. Photochem. Photobiol., A., 2003, 160, 27–32.

    Article  CAS  Google Scholar 

  31. A. S. Polo, M. K. Itokazu, K. M. Frin, A. O. de Toledo Patrocínio, and N. Y. Murakami Iha, Light driven trans-to-cis isomerization of stilbene-like ligands in fac-[Re(CO)3(NN)(trans-L)]+ and luminescence of their photoproducts, Coord. Chem. Rev., 2006, 250, 1669–1680.

    Article  CAS  Google Scholar 

  32. L. D. Ramos, H. M. d. Cruz, and K. P. M. Frin, Photophysical properties of rhenium(I) complexes and photosensitezed generation of singlet oxygen, Photochem. Photobiol. Sci., 2017, 16, 459–466.

    Article  CAS  PubMed  Google Scholar 

  33. S. Van Wallendael, R. J. Shaver, D. P. Rillema, B. J. Yoblinski, M. Stathis, and T. F. Guarr, Ground-state and excited-state properties of monometallic and bimetallic complexes based on rhenium(I) tricarbonyl chloride: Effect of an insulating vs a conducting bridge, Inorg. Chem., 1990, 29, 1761–1767.

    Article  Google Scholar 

  34. B. J. Yoblinski, M. Stathis, and T. F. Guarr, Ligand-bridged rhenium(I) complexes: An electrochemical and photophysical study, Inorg. Chem., 1992, 31, 5–10.

    Article  CAS  Google Scholar 

  35. R.-R. Ye, C.-P. Tan, M.-H. Chen, L. Hao, L.-N. Ji, and Z.-W. Mao, Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms, Chem.–Eur. J., 2016, 22, 7800–7809.

    Article  CAS  PubMed  Google Scholar 

  36. X. Li, D. Zhang, G. Lu, G. Xiao, H. Chi, Y. Dong, Z. Zhang, and Z. Hu, Synthesis and characterization of novel rhenium(I) complexes with large Stokes shift for applications in organic electroluminescent devices, J. Photochem. Photobiol., A., 2012, 241, 1–7.

    Article  CAS  Google Scholar 

  37. L. D. Ramos, R. N. Sampaio, F. F. de Assis, K. T. de Oliveira, P. Homem-de-Mello, A. O. T. Patrocinio, and K. P. M. Frin, Contrasting photophysical properties of rhenium(I) tricarbonyl complexes having carbazole groups attached to the polypyridine ligand, Dalton Trans., 2016, 45, 11688–11698.

    Article  CAS  PubMed  Google Scholar 

  38. M. Wrighton, and D. L. Morse, Nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes, J. Am. Chem. Soc., 1974, 96, 998–1003.

    Article  CAS  Google Scholar 

  39. L. Wallace, and D. P. Rillema, Photophysical properties of rhenium(I) tricarbonyl complexes containing alkyl- and aryl-substituted phenanthrolines as ligands, Inorg. Chem., 1993, 32, 3836–3843.

    Article  CAS  Google Scholar 

  40. R. Argazzi, E. Bertolasi, C. Chiorboli, C. A. Bignozzi, M. K. Itokazu, and N. Y. Murakami Iha, Intramolecular energy transfer processes in binuclear Re-Os complexes, Inorg. Chem., 2001, 40, 6885–6891.

    Article  CAS  PubMed  Google Scholar 

  41. J. V. Caspar, and T. J. Meyer, Application of the energy gap law to nonradiative, excited-state decay, J. Phys. Chem., 1983, 87, 952–957.

    Article  CAS  Google Scholar 

  42. S. V. Litke, A. Y. Ershov, and T. J. Meyer, Photophysics of Bis-bipyridyl Nitro Complexes of Ruthenium(II) with Pyridine Ligands: Substituent Effects, J. Phys. Chem. A., 2014, 118, 6216–6222.

    Article  CAS  PubMed  Google Scholar 

  43. N. Song, C. J. Gagliardi, R. A. Binstead, M.-T. Zhang, H. Thorp, and T. J. Meyer, Role of Proton-Coupled Electron Transfer in the Redox Interconversion between Benzoquinone and Hydroquinone, J. Am. Chem. Soc., 2012, 134, 18538–18541.

    Article  CAS  PubMed  Google Scholar 

  44. A. V. Muller, L. D. Ramos, K. P. M. Frin, K. T. de Oliveira, and A. S. Polo, A high efficiency ruthenium(II) tris-heteroleptic dye containing 4,7-dicarbazole-1,10-phenanthroline for nanocrystalline solar cells, RSC Adv., 2016, 6, 46487–46494.

    Article  CAS  Google Scholar 

  45. G. Jones, N. Mouli, W. A. Haney, and W. R. Bergmark, Photoreduction of Chloranil by Benzhydrol and Related Compounds. Hydrogen Atom Abstraction vs Sequential Electron−Proton Transfer via Quinone Triplet Radical Ion−Pairs, J. Am. Chem. Soc., 1997, 119, 8788–8794.

    Article  CAS  Google Scholar 

  46. Environmental Photochemistry, ed. P. Boule, Springer, Berlin Heidelberg, 1999.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Brazilian agencies Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP/Grant 2015/13149-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Grant 402289/2013-7), Multiuser Central Facilities, and Complexo Laboratorial Nanotecnológico (CLN) at UFABC for experimental support and Quantum Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina P. Morelli Frin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frin, K.P.M., de Almeida, R.M. Mono- and di-nuclear Re(i) complexes and the role of protonable nitrogen atoms in quenching emission by hydroquinone. Photochem Photobiol Sci 16, 1230–1237 (2017). https://doi.org/10.1039/c7pp00092h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00092h

Navigation