Skip to main content
Log in

Scattering particles increase absorbance of dyes — a model study with relevance for sunscreens

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Sunscreens used for the protection of human skin against the harmful effects of solar radiation contain UV absorbers as key ingredients, which are either dissolved in one of the phases of the preparation or, when insoluble, suspended as particles. Although the UV protective effect of particulate UV filters, inorganic and organic, is mainly due to absorption, they scatter UV and visible light. The scattering can have an additional attenuating effect on the incoming radiation by increasing the pathlength of the photons, especially when soluble filters are also present. This is investigated with model systems of dyes and absorbing and non-absorbing particles. The presence of particles causes an increase of the dye absorbance without changing dye concentration or cuvette thickness. It is possible to relate this amplification of dye absorbance to the turbidity of the system. Plots are constructed which allow for a given particle type the representation of all data on one single curve, though measured at different turbidity and cuvette thickness. With that, extrapolations to practical applications of sunscreens are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. U. Osterwalder, M. Sohn, B. Herzog, Global state of sunscreens, Photodermatol., Photoimmunol. Photomed., 2014, 30, 65–81.

    Article  Google Scholar 

  2. B. Herzog, Photoprotection of human skin, Photochemistry, 2012, 40, 245–273.

    Article  CAS  Google Scholar 

  3. U. Osterwalder and B. Herzog, Chemistry and properties of organic and inorganic UV filters, in Clinical Guide to Sunscreens and Photoprotection, ed. H. W. Lim and Z. D. Draelos, Informa Healthcare, New York, 2008, pp. 11–38.

    Chapter  Google Scholar 

  4. D. Schlossmann and Y. Shao, Inorganic ultraviolet filters, in Sunscreens - Regulations and Commercial Development, ed. N. A. Shaath, Cosmetic Science and Technology Series 28, 3rd edn, Taylor & Francis, Boca Raton, 2005, pp. 239–279.

    Google Scholar 

  5. B. Herzog, K. Quass, E. Schmidt, S. Müller, H. Luther, Physical properties of organic particulate UV absorbers used in sunscreens. II. UV-attenuating efficiency as function of particle size, J. Colloid Interface Sci., 2004, 276, 354–363.

    Article  CAS  Google Scholar 

  6. K. J. Hwang, D.-W. Park, S. Jin, S. O. Kang, D. W. Cho, Influence of dye-concentration on the light-scattering effect in dye-sensitized solar cell, Mater. Chem. Phys., 2015, 149/150, 594–600.

    Article  Google Scholar 

  7. A. Ishimaru, Diffusion of light in turbid material, Appl. Opt., 1989, 28, 2210–2215.

    Article  CAS  Google Scholar 

  8. A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys., 1905, 17, 549–560.

    Article  CAS  Google Scholar 

  9. U. Apfel, R. Grunder, M. Ballauf, A turbidity study of particle interaction in latex dispersions, Colloid Polym. Sci., 1994, 272, 820–829.

    Article  CAS  Google Scholar 

  10. M. Kerker, The scattering of light and other electromagnetic radiation, Acdemic Press, New York, 1969, Ch. 8.

    Google Scholar 

  11. M. N. Polyanskiy, Refractive index database, http://refractiveindex.info, Accessed November 17, 2014.

    Google Scholar 

  12. L. Rayleigh, On the diffraction of light by spheres of small refractive index, Proc. R. Soc. London, A, 1914, 90, 219–225.

    Article  CAS  Google Scholar 

  13. J. K. Percus, G. J. Yevick, Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev., 1958, 110, 1–13.

    Article  CAS  Google Scholar 

  14. Ch. E. Jones, Hollow sphere technology for sunscreen formulation, SOFW J., 2002, 128, 36–40.

    CAS  Google Scholar 

  15. B. Herzog, A. Katzenstein, K. Quass, A. Stehlin, H. Luther, Physical properties of organic particulate UV absorbers used in sunscreens. I. Determination of particle size with fiber-optic quasi-elastic light scattering (FOQELS), disc centrifugation, and laser diffractometry, J. Colloid Interface Sci., 2004, 271, 136–144.

    Article  CAS  Google Scholar 

  16. O. Reich and H.-G. Löhmannsröben, unpublished data, University of Potsdam, 2005.

    Google Scholar 

  17. H. Wiese, D. Horn, Single-mode fibers in fiber-optic quasielastic light scattering: A study of the dynamics of concentrated latex dispersions, J. Chem. Phys., 1991, 94, 6429–6443.

    Article  CAS  Google Scholar 

  18. H. Wiese, D. Horn, Fiber-optic quasielastic light scattering in concentrated dispersions: The on-line process control of carotenoid micronization, Ber. Bunsen-Ges. Phys. Chem., 1993, 97, 1589–1597.

    Article  CAS  Google Scholar 

  19. O. Reich, unpublished data, University of Potsdam, 2011.

    Google Scholar 

  20. L. Bressel, O. Reich, Theoretical and experimental study of the diffuse transmission of light through highly concentrated absorbing and scattering materials. Part I: Monte Carlo simulations, J. Quant. Spectrosc. Radiat. Transfer, 2014, 146, 190–198.

    Article  CAS  Google Scholar 

  21. B. Herzog, Models for the calculation of sun protection factors and parameters characterizing the UVA protection ability of cosmetic sunscreens, in Colloids in Cosmetics and Personal Care, ed. Tharwart F. Tadros, Wiley-VCH, Weinheim, 2008, vol. 4, pp. 275–308.

    CAS  Google Scholar 

  22. https://www.sunscreensimulator.basf.com, used at March 19th 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Herzog.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzog, B., Sengün, F. Scattering particles increase absorbance of dyes — a model study with relevance for sunscreens. Photochem Photobiol Sci 14, 2054–2063 (2015). https://doi.org/10.1039/c5pp00109a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00109a

Navigation