Skip to main content
Log in

A turbidity study of particle interaction in latex suspensions

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A turbidimetric analysis of particle interaction in latex suspensions is given. The turbidity measured at different wavelengths λ can be rendered by the product of an integrated form factorQ2) and a suitably defined integrated structure factorZ2,c). This factorization rests on the expansion of the form factor of the particlesP(q) and the structure factorS(q) [q=(4π/λ)sin(θ/2); θ: scattering angle] of the system in even powers ofq. The accuracy of this approximation has been shown by calculating the turbidity for a system of hard spheres in terms of the Percus-Yevick structure factor by numerical integration. Also, the effect of polydispersity has been taken into account within the frame of Percus-Yevick-Vrij theory for non-uniform hard spheres. It is shown that the influence of small polydispersity (standard deviation below 8%) is within experimental uncertainty. The method is applied to precise UV-spectra (400≤λ≤800 nm) obtained from a polystyrene latex with a diameter of 77.4 nm. The integrated structure factorZ2,c) obtained experimentally can be interpreted in terms of an effective diameter of interaction giving a measure for the strength of electrostatic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunter RJ (1991) Foundations of Colloid Science, Vol 1. Clarendon Press, Oxford

    Google Scholar 

  2. Hunter RJ (1991) Foundations of Colloid Science, Vol 2. Clarendon Press Oxford

    Google Scholar 

  3. Candau F, Ottewill RH (1990) An Introduction to Polymer Colloids. Kluwer Academic Publishers Dordrecht

    Google Scholar 

  4. Ottewill RH (1990) Faraday Disc Chem Soc 90:1 and further references given there

    Google Scholar 

  5. Goodwin JW, Ottewill RH, Owens SM, Richardson RA, Hayer JB (1985) Makromol Chem Suppl 10/11:499

    Google Scholar 

  6. Duits MGH, May RP, Vrij A, de Kruif CG (1991), Langmuir 7:62

    Google Scholar 

  7. Ashdown S, Markovic I, Ottewill RH, Lindner P, Oberthür RC, Rennie AR (1990) Langmuir 6:303

    Google Scholar 

  8. Moonen J, de Kruif C, Vrij A (1988) Colloid Polym Sci 266:1068

    Google Scholar 

  9. Moonen J, Vrij A (1988) Colloid Polym Sci 266:1140

    Google Scholar 

  10. Duits GH, de Kruif CG, Vrij A (1992) Colloid Polym Sci 270:154

    Google Scholar 

  11. Ottewill RH, Richardson RA (1982) Colloid Polym Sci 260:708

    Google Scholar 

  12. Härtl W, Segschneider C, Versmold H (1991) Mol Phys 73:541

    Google Scholar 

  13. Härtl W, Versmold H, Zhang-Heider X (1991) Ber Bunsenges Phys Chem 95:1105; Härtl W, Versmold H, Linse P (1992), J Phys Chem 97: 7797

    Google Scholar 

  14. van Helden AK, Vrij A (1980) J Colloid Int Sci 78:312

    Google Scholar 

  15. Livsey I, Ottewill RH (1989) Colloid Polym Sci 267:421

    Google Scholar 

  16. Kerker M (1969) The Scattering of Light and Other Electromagnetic Radiation. Academic Press, New York

    Google Scholar 

  17. Lange H (1968) Colloid Polym Sci 223:24

    Google Scholar 

  18. Debye P, Woermann D, Chu B (1962), J Chem Phys 36:851

    Google Scholar 

  19. see e.g.: Shen W, Smith GR, Knobler CM, Scott RL (1991) 95:3376 DaMore LW, Jacobs DT (1992) J Chem Phys 97:464; Jayalakshmi Y, Beysens D (1992) Phys Rev Lett A45, 8709 and further literature cited therein

  20. Jansen JW, de Kruif CG, Vrij (1986) J Colloid Interf Sci 114:492

    Google Scholar 

  21. Rouw W, Vrij A, de Kruif CG (1988) Colloids Surf 31:299

    Google Scholar 

  22. Penders MGHM, Vrij A (1990) J Chem Phys 93:3704

    Google Scholar 

  23. Grunder R, Kim YS, Ballauff M, Kranz D, Müller HG (1991) Angew Chem Int Ed 30:1650; Grunder R, Urban G, Ballauff M (1992) Colloid Polym Sci (in press)

    Google Scholar 

  24. D'Aguanno B, Klein R (1991) J Chem Soc Faraday Trans 87:379

    Google Scholar 

  25. Pusey PN, Fijnaut HM, Vrij A (1982) J Chem Phys 77:4270

    Google Scholar 

  26. Härtl W, Versmold H (1984) 80:1387

  27. Ashcroft NW, Lekner J (1966) Phys Rev 145:145

    Google Scholar 

  28. Hansen JP, McDonald IR (1986) Theory of Simple Liquids, Second Edition, Academic Press, London

    Google Scholar 

  29. Vrij A (1979) J Chem Phys 77:3267

    Google Scholar 

  30. Evans R, Sluckin TJ (1981) J Phys C 14:2569

    Google Scholar 

  31. Grimson MJ (1982) J Chem Soc Faraday 2 79:817

    Google Scholar 

  32. Maron SH, Pierce PE, Ulevich N (1963) J Colloid Sci 18:470

    Google Scholar 

  33. Goodwin JW, Ottewill RH, Parentich A (1990) Colloid Polym Sci 268: 1131

    Google Scholar 

  34. Devon MJ, Rudin A (1987) J Appl Polym Sci 34:469 third entry of table I

    Google Scholar 

  35. Nieuwenhuis EA, Pathmamanoharan C, Vrij A (1981) J Colloid Interf Sci 81:196

    Google Scholar 

  36. Andersen HC, Weeks JD, Chandler D (1971) Phys Rev A4:1597

    Google Scholar 

  37. Hayter JB, Penfold J (1981) Mol Phys 42:109

    Google Scholar 

  38. Hansen JP, Hayter JB (1982) Mol Phys 46:651

    Google Scholar 

  39. Härtl W, Vermold H, Wittig U (1992) Langmuir 8, 2885

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apfel, U., Grunder, R. & Ballauff, M. A turbidity study of particle interaction in latex suspensions. Colloid Polym Sci 272, 820–829 (1994). https://doi.org/10.1007/BF00652423

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652423

Key words

Navigation