Skip to main content
Log in

In vivo detection of chemiluminescence to monitor photodynamic threshold dose for tumor treatment

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

During photodynamic therapy (PDT) it is important to monitor the treatment progress to achieve the intended therapeutic outcome. Chemiluminescence (CL) provides a sensitive and selective means for 1O2 detection. In our study, by comparing CL with the corresponding in situ PDT treatment protocols and the treatment effect, the results indicate that the treatment outcome for tumors was governed by a set of dosimetry factors with a rather complicated relationship, but there was a remarkable connection between tumor treatment effect and CL. In conclusion, CL can be used in in vivo PDT to determine the dose of tumor treatment and monitor the treatment threshold. By monitoring CL it is feasible to determine PDT dose to predict tumor treatment effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. N. L. Oleinick, R. L. Morris and I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochem. Photobiol. Sci., 2002, 1, 1–21.

    Article  CAS  Google Scholar 

  2. C. W. McAndrew, R. F. Gastwirt and D. J. Donoghue, The atypical CDK activator Spy1 regulates the intrinsic DNA damage response and is dependent upon p53 to inhibit apoptosis, Cell Cycle, 2009, 8, 66–75.

    Article  CAS  Google Scholar 

  3. F. F. Zhou, D. Xing and W. R. Chen, Dynamics and mechanism of HSP70 translocation induced by photodynamic therapy treatment, Cancer Lett., 2008, 264, 135–144.

    Article  CAS  Google Scholar 

  4. S. N. Wu, D. Xing, F. Wang, T. S. Chen and W. R. Chen, Mechanistic study of apoptosis induced by high-fluence low-power laser irradiation using fluorescence imaging techniques, J. Biomed. Opt., 2007, 12, 064015.

    Article  Google Scholar 

  5. X. J. Gao, T. S. Chen, D. Xing, F. Wang, Y. H. Pei and X. B. Wei, Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation, J. Cell. Physiol., 2006, 206, 441–448.

    Article  CAS  Google Scholar 

  6. S. B. Brown, E. A. Brown and I. Walker, The present and future role of photodynamic therapy in cancer treatment, Lancet Oncol., 2004, 5, 497–508.

    Article  CAS  Google Scholar 

  7. T. J. Farrell, B. C. Wilson, M. S. Patterson and M. C. Olivo, Comparison of the in vivo photodynamic threshold dose for photofrin, mono-and tetrasulfonated aluminium phthalocyanine using a rat liver model, Photochem. Photobiol., 1998, 68, 394–399.

    Article  CAS  Google Scholar 

  8. M. S. Patterson, B. C. Wilson and R. Graff, In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminium chlorosulfonated phthalocyanine, Photochem. Photobiol., 1990, 51, 343–349.

    Article  CAS  Google Scholar 

  9. I. A. Boere, D. J. Robinson, H. S. de Bruijn, J. van den Boogert, H. W. Tilanus, H. J. Sterenborg and R. W. de Bruin, Monitoring in situ dosimetry and protoporphyrin IX fluorescence photobleaching in the normal rat esophagus during 5-aminolevulinic acid photodynamic therapy, Photochem. Photobiol., 2003, 78, 271–277.

    Article  CAS  Google Scholar 

  10. A. Johansson, T. Johansson, M. S. Thompson, N. Bendsoe, K. Svan-berg, S. Svanberg and S. Andersson-Engels, In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors, J. Biomed. Opt., 2006, 11, 34029.

    Article  Google Scholar 

  11. H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh and T. M. Busch, Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome, Cancer Res., 2004, 64, 7553–7561.

    Article  CAS  Google Scholar 

  12. L. Z. Xiang, D. Xing, H. M. Gu, D. W. Yang, S. H. Yang, L. M. Zeng and W. R. Chen, Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor, J. Biomed. Opt., 2007, 12, 014001.

    Article  Google Scholar 

  13. J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa and H. Namba, Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma, Clin. Cancer Res., 2006, 12, 7132–7139.

    Article  CAS  Google Scholar 

  14. D. Trachootham, Y. Zhou, H. Zhang, Y. Demizu, Z. Chen, H. Pelicano, P. J. Chiao, G. Achanta, R. B. Arlinghaus, J. Liu and P. Huang, Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate, Cancer Cell, 2006, 10, 241–252.

    Article  CAS  Google Scholar 

  15. M. J. Niedre, C. S. Yu, M. S. Patterson and B. C. Wilson, Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid, Br. J. Cancer, 2005, 92, 298–304.

    Article  CAS  Google Scholar 

  16. L. Y. Zang, Z. Y. Zhang and H. P. Misra, EPR studies of trapped singlet oxygen (1O2) generated during photoirradiation of hypocrellin A, Photochem. Photobiol., 1990, 52, 677–683.

    Article  CAS  Google Scholar 

  17. M. T. Jarvi, M. J. Niedre, M. S. Patterson and B. C. Wilson, Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects, Photochem. Photobiol., 2006, 82, 1198–1210.

    Article  CAS  Google Scholar 

  18. Z. H. Song and C. N. Wang, Determination of picogram-levels of acetylspiramycin in human urine and serum by flow injection chemiluminescence, Microchim. Acta, 2004, 149, 117–122.

    Article  Google Scholar 

  19. A. Hausladen, R. Rafikov, M. Angelo, D. J. Singel, E. Nudler and J. S. Stamler, Assessment of nitric oxide signals by triiodide chemiluminescence, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 2157–2162.

    Article  CAS  Google Scholar 

  20. J. Du, Y. Li and J. Lu, Flow injection chemiluminescence determination of captopril based on its enhancing effect on the luminolferricyanide/ferrocyanide reaction, Luminescence, 2002, 17, 165–167.

    Article  CAS  Google Scholar 

  21. X. H. Li, G. X. Zhang, H. M. Ma, D. Q. Zhang, J. Li and D. B. Zhu, 4,5-Dimethylthio-4′-[2-(9-anthryloxy)ethylthio]tetrathiafulvalene, a highly selective and sensitive chemiluminescence probe for singlet oxygen, J. Am. Chem. Soc., 2004, 126, 11543–11548.

    Article  CAS  Google Scholar 

  22. J. Wang, D. Xing, Y. G. He and X. J. Hu, Localization of tumor by chemiluminescence probe during photosensitization action, Cancer Lett., 2002, 188, 59–65.

    Article  CAS  Google Scholar 

  23. Y. C. Wei, D. Xing, S. M. Luo, W. Xu and Q. Chen, Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy, J. Biomed. Opt., 2008, 13, 024023.

    Article  Google Scholar 

  24. Y. H. He, D. Xing, G. H. Yan and K. Ueda, FCLA chemiluminescence from sonodynamic action in vitro and in vivo, Cancer Lett., 2002, 182, 141–145.

    Article  CAS  Google Scholar 

  25. S. Mashiko, N. Suzuki, S. Koga, M. Nakano, T. Goto, T. Ashino, I. Mizumoto and H. Inaba, Measurement of rate constants for quenching singlet oxygen with a Cypridina luciferin analog (2-methyl-6-[p-methoxyphenyl]-3,7-dihydroimidazo [1,2-a]pyrazin-3-one) and sodium azide, J. Biolumin. Chemilumin., 1991, 6, 69–72.

    Article  CAS  Google Scholar 

  26. K. Teranishi and T. Nishiguchi, Cyclodextrin-bound 6-(4-methoxyphenyl)imidazo[1,2-alpha ±]pyrazin-3(7H)-ones with fluorescein as green chemiluminescent probes for superoxide anions, Anal. Biochem., 2004, 325, 185–195.

    Article  CAS  Google Scholar 

  27. Y. X. Wu and D. Xing, Permeating eff iciency and localization of FCLA and HpD through Membrane of lung cancer cell, Acta Laser Biol. Sinica, 2005, 14, 287–292.

    CAS  Google Scholar 

  28. J. Wang, D. Xing, Y. H. He and X. J. Hu, Experimental study on photodynamic diagnosis of cancer mediated by chemiluminescence probe, FEBS Lett., 2002, 523, 128–132.

    Article  CAS  Google Scholar 

  29. A. Jalili, M. Makowski, T. Switaj, D. Nowis, G. M. Wilczynski, E. Wilczek, M. Chorazy-Massalska, A. Radzikowska, W. Maslinski, L. Bialy, J. Sienko, A. Sieron, M. Adamek, G. Basak, P. Mroz, I. W. Krasnodebski, M. Jakobisiak and J. Golab, Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells, Clin. Cancer Res., 2004, 10, 4498–4508.

    Article  CAS  Google Scholar 

  30. M. E. Murphy and H. Sies, Visible-range low-level chemiluminescence in biological systems, Methods Enzymol., 1990, 186, 595–610.

    Article  CAS  Google Scholar 

  31. Y. C. Wei, D. Xing, S. M. Luo, L. Y. Yang and Q. Chen, Quantitative measurement of reactive oxygen species in vivo by utilizing a novel method: chemiluminescence with an internal fluorescence as reference, J. Biomed. Opt., 2010, 15, 027006.

    Article  Google Scholar 

  32. K. M. Kurrelmeyer, L. H. Michael, G. Baumgarten, G. E. Taffet, J. J. Peschon, N. Sivasubramanian, M. L. Entman and D. L. Mann, Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 5456–5461.

    Article  CAS  Google Scholar 

  33. J. H. Woodhams, L. Kunz, S. G. Bown and A. J. MacRobert, Correlation of real-time haemoglobin oxygen saturation monitoring during photodynamic therapy with microvascular effects and tissue necrosis in normal rat liver, Br. J. Cancer, 2004, 91, 788–794.

    Article  CAS  Google Scholar 

  34. M. Seshadri, D. A. Bellnier, L. A. Vaughan, J. A. Spernyak, R. Mazurchuk, T. H. Foster and B. W. Henderson, Light delivery over extended time periods enhances the effectiveness of photodynamic therapy, Clin. Cancer Res., 2008, 14, 2796–2805.

    Article  CAS  Google Scholar 

  35. B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney and J. Morgan, Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors, Cancer Res., 2004, 64, 2120–2126.

    Article  CAS  Google Scholar 

  36. R. Cheung, M. Solonenko, T. M. Busch, F. Del Piero, M. E. Putt, S. M. Hahn and A. G. Yodh, Correlation of in vivo photosensitizer fluorescence and photodynamic-therapy-induced depth of necrosis in a murine tumor model, J. Biomed. Opt., 2003, 8, 248–252.

    Article  CAS  Google Scholar 

  37. Q. Chen, M. Chopp, L. Madigan, M. O. Dereski and F. W. Hetzel, Damage threshold of normal rat brain in photodynamic therapy, Photochem. Photobiol., 1996, 64, 163–167.

    Article  CAS  Google Scholar 

  38. R. C. Ferraz, J. Ferreira, P. F. Menezes, C. H. Sibata, E. S. OC and V. S. Bagnato, Determination of threshold dose of photodynamic therapy to measure superficial necrosis, Photomed. Laser Surg., 2009, 27, 93–99.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Song, J. & Chen, Q. In vivo detection of chemiluminescence to monitor photodynamic threshold dose for tumor treatment. Photochem Photobiol Sci 10, 1066–1071 (2011). https://doi.org/10.1039/c0pp00346h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00346h

Navigation