Skip to main content
Log in

Selective time-resolved binding of copper(ii) by pyropheophorbide-a methyl ester

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The complexation behavior of pyropheophorbide-a methyl ester (PPME) with transition metal ions as well as other biologically relevant metal ions has been investigated in water—DMF (2 : 1 v/v) solution. PPME was found to selectively complex Cu2+ ions, which leads to a distinct change in its absorption spectrum as well as efficient fluorescence quenching. The degree of fluorescence quenching by Cu2+ depended on concentration and time. Upon addition of Cu2+, the fluorescence showed a time-resolved decay on the time scale of minutes to hours, with the decay rate being dependent on the cation concentration. Fitting according to a bimolecular reaction rate law provided a rate constant of 650 ± 90 M−1 s−1 at 298 K for metallochlorin formation. The potential implications of Cu2+ binding for the use of PPME in photodynamic therapy are discussed, along with its use as a fluorescent sensor for detection of micromolar concentrations of Cu2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Murakami, J. Kikuchi, Y. Hisaeda and O. Hayashida, Artificial enzymes, Chem. Rev., 1996, 96, 721–758.

    Article  CAS  PubMed  Google Scholar 

  2. M. R. Wasielewski, Photoinduced electron-transfer in supramolecular systems for artificial photosynthesis, Chem. Rev., 1992, 92, 435–461.

    Article  CAS  Google Scholar 

  3. B. Meunier, Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage, Chem. Rev., 1992, 92, 1411–1456.

    Article  CAS  Google Scholar 

  4. R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy, Chem. Soc. Rev., 1995, 24, 19–33.

    Article  CAS  Google Scholar 

  5. B. W. Henderson and T. J. Dougherty, How does photodynamic therapy work, Photochem. Photobiol., 1992, 55, 145–157.

    Article  CAS  PubMed  Google Scholar 

  6. E. S. Nyman and P. H. Hynninen, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2004, 73, 1–28.

    Article  CAS  Google Scholar 

  7. R. K. Pandey, A. B. Sumlin, S. Constantine, M. Aoudia, W. R. Potter, D. A. Bellnier, B. W. Henderson, M. A. Rodgers, K. M. Smith and T. J. Dougherty, Alkyl ether analogs of chlorophyll-a derivatives. 1. Synthesis, photophysical properties and photodynamic efficacy, Photochem. Photobiol., 1996, 64, 194–204.

    Article  CAS  PubMed  Google Scholar 

  8. D. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  9. R. K. Pandey, D. A. Bellnier, K. M. Smith and T. J. Dougherty, Chlorin and porphyrin derivatives as potential photosensitizers in photodynamic therapy, Photochem. Photobiol., 1991, 53, 65–72.

    Article  CAS  PubMed  Google Scholar 

  10. E. A. Ermilov, S. Al-Omari, M. Helmreich, N. Jux, A. Hirsch and B. Roder, Steady-state and time-resolved studies on the photophysical properties of fullerene-pyropheophorbide a complexes in polar and nonpolar solvents, Opt. Commun., 2004, 234, 245–252.

    Article  CAS  Google Scholar 

  11. J. S. Kavakka, S. Heikkinen, I. Kilpelainen, M. Mattila, H. Lipsanen and J. Helaja, Noncovalent attachment of pyro-pheophorbide a to a carbon nanotube, Chem. Commun., 2007, 519–521.

    Google Scholar 

  12. D. M. Guldi, Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models, Chem. Soc. Rev., 2002, 31, 22–36.

    Article  CAS  PubMed  Google Scholar 

  13. D. Gust, T. A. Moore and A. L. Moore, Mimicking photosynthetic solar energy transduction, Acc. Chem. Res., 2001, 34, 40–48.

    Article  CAS  PubMed  Google Scholar 

  14. L. Petit, A. Quartarolo, C. Adamo and N. Russo, Spectroscopic properties of porphyrin-like photosensitizers: Insights from theory, J. Phys. Chem. B, 2006, 110, 2398–2404.

    Article  CAS  PubMed  Google Scholar 

  15. A. Hajri, S. Wack, C. Meyer, M. K. Smith, C. Leberquier, M. Kedinger and M. Aprahamian, In vitro and in vivo efficacy of photofrin (R) and pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells, Photochem. Photobiol., 2002, 75, 140–148.

    Article  CAS  PubMed  Google Scholar 

  16. B. Roder, T. Hanke, S. Oelckers, S. Hackbarth and C. Symietz, Photophysical properties of pheophorbide a in solution and in model membrane systems, J. Porphyrins Phthalocyanines, 2000, 4, 37–44.

    Article  CAS  Google Scholar 

  17. G. M. Garbo, Purpurins and benzochlorins as sensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 1996, 34, 109–116.

    Article  CAS  Google Scholar 

  18. A. Dagan, S. Gatt, S. CerbuKarabat, J. C. Maziere, C. Maziere, R. Santus, E. L. Engelhardt, K. A. Yeh, C. C. Stobbe, M. C. Fenning and J. D. Chapman, Uptake by cells and photosensitizing effectiveness of novel pheophorbide derivatives in vitro, Int. J. Cancer, 1995, 63, 831–839.

    Article  CAS  PubMed  Google Scholar 

  19. D. Skalkos, J. A. Hampton, R. W. Keck and S. H. Selman, in Photodynamic therapy and biomedical lasers, ed. P. Spinelli, M. Dalfante and R. Marchesini, Elsevier Science Publ B V, Amsterdam, 1992, pp. 860–865.

  20. A. R. Morgan, D. Skalkos, G. Maguire, A. Rampersaud, G. Garbo, R. Keck and S. H. Selman, Observations on the synthesis and invivo photodynamic activity of some benzochlorins, Photochem. Photobiol., 1992, 55, 133–136.

    Article  CAS  PubMed  Google Scholar 

  21. S. Chernomorsky, C. Wong and R. D. Poretz, Pheophorbide a-induced photooxidation of cytochrome-c - implication for photodynamic therapy, Photochem. Photobiol., 1992, 55, 205–211.

    Article  CAS  PubMed  Google Scholar 

  22. M. Komiyama, M. Kobayashi and M. Harada, Pheophorbide as efficient sensitizer for DNA photocleavage–an implication to its role in photodynamic cancer-therapy, Chem. Lett., 1991, 2123–2126.

    Google Scholar 

  23. B. Roder, Pheophorbide a–a new photosensitizer for the photodynamic therapy of tumors, Studia Biophysica, 1986, 114, 183–186.

    Google Scholar 

  24. S. Sommer, C. Rimington and J. Moan, Formation of metal-complexes of tumor-localizing porphyrins, FEBS Lett., 1984, 172, 267–271.

    Article  CAS  PubMed  Google Scholar 

  25. V. A. Ol’shevskaya, A. N. Savchenko, A. V. Zaitsev, E. G. Kononova, P. V. Petrovskii, A. A. Ramonova, V. V. Tatarskiy, O. V. Uvarov, M. M. Moisenovich, V. N. Kalinin and A. A. Shtil, Novel metal complexes of boronated chlorin e(6) for photodynamic therapy, J. Organomet. Chem., 2009, 694, 1632–1637.

    Article  CAS  Google Scholar 

  26. S. M. Borisov, D. B. Papkovsky, G. V. Ponomarev, A. S. DeToma, R. Saf and I. Klimant, Photophysical properties of the new phosphorescent platinum(II) and palladium(II) complexes of benzoporphyrins and chlorins, J. Photochem. Photobiol., A, 2009, 206, 87–92.

    Article  CAS  Google Scholar 

  27. H. Ali, J. E. van Lier, Metal complexes as photo- and radiosensitizers, Chem. Rev., 1999, 99, 2379–2450.

    Article  CAS  PubMed  Google Scholar 

  28. Y. Chen, X. Zheng, M. P. Dobhal, A. Gryshuk, J. Morgan, T. J. Dougherty, A. Oseroff and R. K. Pandey, Methyl pyropheophorbide-a analogues: Potential fluorescent probes for the peripheral-type benzodiazepine receptor. Effect of central metal in photosensitizing efficacy, J. Med. Chem., 2005, 48, 3692–3695.

    Article  CAS  PubMed  Google Scholar 

  29. S. Al-Omari and A. Ali, Photodynamic activity of pyropheophorbide methyl ester and pyropheophorbide a in dimethylformamide solution, Gen. Physiol. Biophys., 2009, 28, 70–77.

    Article  CAS  PubMed  Google Scholar 

  30. C. S. Xu and A. W. N. Leung, Photodynamic effects of pyropheophorbide-a methyl ester in nasopharyngeal carcinoma cells, Med. Sci. Monitor, 2006, 12, BR257–BR262.

    CAS  Google Scholar 

  31. X. Sun and W. N. Leung, Photodynamic therapy with pyropheophorbide-a methyl ester in human lung carcinoma cancer cell: Efficacy, localization and apoptosis, Photochem. Photobiol., 2002, 75, 644–651.

    Article  CAS  PubMed  Google Scholar 

  32. J. Y. Matroule, G. Bonizzi, P. Morliere, N. Paillous, R. Santus, V. Bours and J. Piette, Pyropheophorbide-a methyl ester-mediated photosensitization activates transcription factor NF-k B through the interleukin-1 receptor-dependent signaling pathway, J. Biol. Chem., 1999, 274, 2988–3000.

    Article  CAS  PubMed  Google Scholar 

  33. C. Curty, N. Engel, J. Iturraspe and A. Gossauer, Chlorophyll catabolism.6. Mechanism of photooxygenation of the Cd(II) complex of pyropheophorbide-a methyl-ester, Photochem. Photobiol., 1995, 61, 552–556.

    Article  CAS  Google Scholar 

  34. M. B. Hu, H. X. Li, L. S. Chen, H. B. Zhang and C. Dong, Fluorescence quenching of pheophytin-a by copper(II) ions, Chin. J. Chem., 2009, 27, 513–517.

    Article  CAS  Google Scholar 

  35. L. Orzel, R. van Eldik, L. Fiedor and G. Stochel, Mechanistic information on Cu-II metalation and transmetalation of chlorophylls, Eur. J. Inorg. Chem., 2009, 2393–2406.

    Google Scholar 

  36. M. R. M. Domingues, M. G. Santana-Marques, A. J. Ferrer-Correia, Formation of metalloporphyrins and metallochlorins in the source of a mass spectrometer under fast atom bombardment, Int. J. Mass Spectrom. Ion Processes, 1997, 165–166, 551–559.

    Article  Google Scholar 

  37. R. Giovannetti, V. Bartocci, S. Ferraro, M. Gusteri and P. Passamonti, Spectrophotometric study of coproporphyrin-I complexes of copper(II) and cobalt(II), Talanta, 1995, 42, 1913–1918.

    Article  CAS  PubMed  Google Scholar 

  38. C. Grant and P. Hambrigh, Kinetics of electrophilic substitution reactions involving metal ions in metalloporphyrins, J. Am. Chem. Soc., 1969, 91, 4195–4198.

    Article  CAS  Google Scholar 

  39. K. Kawamura, S. Igarashi and T. Yotsuyanagi, Acceleration effect of l-tryptophan on metal-ion exchange-reaction of cadmium(II) with water-soluble-porphyrin-lead(II) complex and its application to stopped-flow spectrophotometric determination on nm level of cadmium(II), Anal. Sci., 1988, 4, 175–179.

    Article  CAS  Google Scholar 

  40. M. Tabata and M. Tanaka, Porphyrins as reagents for trace-metal analysis, TrAC, Trends Anal. Chem., 1991, 10, 128–133.

    Article  CAS  Google Scholar 

  41. M. Tabata and M. Babasaki, Kinetics and mechanism of acceleration of copper(II) incorporation into a porphyrin by reducing agents, Inorg. Chem., 1992, 31, 5268–5271.

    Article  CAS  Google Scholar 

  42. J. L. Garate-Morales, F. S. Tham and C. A. Reed, Do sitting-atop metalloporphyrin complexes exist? Observation of N-H—pi bonding in arene solvates of a diprotonated porphyrin dication, Inorg. Chem., 2007, 46, 1514–1516.

    Article  CAS  PubMed  Google Scholar 

  43. Y. Inada, Y. Nakano, M. Inamo, M. Nomura and S. Funahashi, Structural characterization and formation mechanism of sitting-atop (SAT) complexes of 5,10,15,20-tetraphenylporphyrin with divalent metal ions. Structure of the Cu(II)-SAT complex as determined by fluorescent extended X-ray absorption fine structure, Inorg. Chem., 2000, 39, 4793–4801.

    Article  CAS  PubMed  Google Scholar 

  44. Y. Inada, Y. Sugimoto, Y. Nakano, N. Itoh and S. Funahashi, Formation and deprotonation kinetics of the sitting-atop complex of copper(II) ion with 5,10,15,20-tetraphenylporphyrin relevant to the porphyrin metalation mechanism. Structure of copper(II)-pyridine complexes in acetonitrile as determined by exafs spectroscopy, Inorg. Chem., 1998, 37, 5519–5526.

    Article  CAS  PubMed  Google Scholar 

  45. M. Inamo, T. Kohagura, I. Kaljurand and I. Leito, Sitting-atop complex formation of 2,3,7,8,12,13,17,18-octaethylporphyrin with copper(II) ion in acetonitrile, Inorg. Chim. Acta, 2002, 340, 87–96.

    Article  CAS  Google Scholar 

  46. S. Funahashi, Y. Yamaguchi and M. Tanaka, Kinetics and mechanism of copper(II), zinc(II), and cadmium(II) incorporation into 5,10,15,20-tetraphenylporphine and N-methyl-5,10,15,20-tetraphenylporphine in N,N-dimethylformamide, Bull. Chem. Soc. Jpn., 1984, 57, 204–208.

    Article  CAS  Google Scholar 

  47. R. Giovannetti, V. Bartocci, F. Pucciarelli and M. Ricciutelli, Reactions of anionic porphyrin with group 11 elements: A spectrophotometric and electrospray ionization mass spectrometry study, Talanta, 2004, 63, 857–864.

    Article  CAS  PubMed  Google Scholar 

  48. K. J. Waldron, J. C. Rutherford, D. Ford and N. J. Robinson, Metalloproteins and metal sensing, Nature, 2009, 460, 823–830.

    Article  CAS  PubMed  Google Scholar 

  49. M. H. Kim, H. H. Jang, S. Yi, S. K. Chang and M. S. Han, Coumarin-derivative-based off-on catalytic chemodosimeter for Cu2+ ions, Chem. Commun., 2009, 4838–4840.

    Google Scholar 

  50. H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong, J. W. Kim, S. H. Yan, J. Y. Lee, J. H. Lee, T. Joo and J. S. Kim, Coumarin-derived Cu2+-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells, J. Am. Chem. Soc., 2009, 131, 2008–2012.

    Article  CAS  PubMed  Google Scholar 

  51. L. J. Jiao, J. L. Li, S. Z. Zhang, C. Wei, E. H. Hao and M. G. H. Vicente, A selective fluorescent sensor for imaging Cu2+ in living cells, New J. Chem., 2009, 33, 1888–1893.

    Article  CAS  Google Scholar 

  52. E. L. Que, D. W. Domaille and C. J. Chang, Metals in neurobiology: Probing their chemistry and biology with molecular imaging, Chem. Rev., 2008, 108, 1517–1549.

    Article  CAS  PubMed  Google Scholar 

  53. B. E. Kim, T. Nevitt and D. J. Thiele, Mechanisms for copper acquisition, distribution and regulation, Nat. Chem. Biol., 2008, 4, 176–185.

    Article  CAS  PubMed  Google Scholar 

  54. R. Kramer, Fluorescent chemosensors for Cu2+ ions: Fast, selective, and highly sensitive, Angew. Chem., Int. Ed., 1998, 37, 772–773.

    Article  CAS  Google Scholar 

  55. J. Stockel, J. Safar, A. C. Wallace, F. E. Cohen and S. B. Prusiner, Prion protein selectively binds copper(II) ions, Biochemistry, 1998, 37, 7185–7193.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na’il Saleh or Werner M. Nau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, I., Saleh, N. & Nau, W.M. Selective time-resolved binding of copper(ii) by pyropheophorbide-a methyl ester. Photochem Photobiol Sci 9, 649–654 (2010). https://doi.org/10.1039/c0pp00002g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00002g

Navigation