Skip to main content
Log in

The role of oxygen monitoring during photodynamic therapy and its potential for treatment dosimetry

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Understanding of the biology of photodynamic therapy (PDT) has expanded tremendously over the past few years. However, in the clinical situation, it is still a challenge to match the extent of PDT effects to the extent of the disease process being treated. PDT requires drug, light and oxygen, any of which can be the limiting factor in determining efficacy at each point in a target organ. This article reviews techniques available for monitoring tissue oxygenation during PDT. Point measurements can be made using oxygen electrodes or luminescence-based optodes for direct measurements of tissue pO2, or using optical spectroscopy for measuring the oxygen saturation of haemoglobin. Imaging is considerably more complex, but may become feasible with techniques like BOLD MRI. Pre-clinical studies have shown dramatic changes in oxygenation during PDT, which vary with the photosensitiser used and the light delivery regimen. Better oxygenation throughout treatment is achieved if the light fluence rate is kept low as this reduces the rate of oxygen consumption. The relationship between tissue oxygenation and PDT effect is complex and remarkably few studies have directly correlated oxygenation changes during PDT with the final biological effect, although those that have confirm the value of maintaining good oxygenation. Real time monitoring to ensure adequate oxygenation at strategic points in target tissues during PDT is likely to be important, particularly in the image guided treatment of tumours of solid organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Moan, S. Sommer, Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells, Cancer Res., 1985, 45, 1608–1610.

    CAS  PubMed  Google Scholar 

  2. J. B. Mitchell, S. McPherson, W. DeGraff, J. Gamson, A. Zabell, A. Russo, Oxygen dependence of hematoporphyrin derivative-induced photoinactivation of Chinese hamster cells, Cancer Res., 1985, 45, 2008–2011.

    CAS  PubMed  Google Scholar 

  3. S. K. Lee, I. J. Forbes, W. H. Betts, Oxygen dependency of photocytotoxicity with haematoporphyrin derivative, Photochem. Photobiol., 1984, 39, 631–634.

    Article  Google Scholar 

  4. M. G. Nichols, T. H. Foster, Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids, Phys. Med. Biol., 1994, 39, 2161–2181.

    Article  CAS  PubMed  Google Scholar 

  5. I. Georgakoudi, M. G. Nichols, T. H. Foster, The mechanism of Photofrin photobleaching and its consequences for photodynamic dosimetry, Photochem. Photobiol., 1997, 65, 135–144.

    Article  CAS  PubMed  Google Scholar 

  6. T. M. Sitnik, J. A. Hampton, B. W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate, Br. J. Cancer, 1998, 77, 1386–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B. W. Henderson, T. M. Busch, L. A. Vaughan, N. P. Frawley, D. Babich, T. A. Sosa, J. D. Zollo, A. S. Dee, M. T. Cooper, D. A. Bellnier, W. R. Greco, A. R. Oseroff, Photofrin photodynamic therapy can significantly deplete or preserve oxygenation in human basal cell carcinomas during treatment, depending on fluence rate, Cancer Res., 2000, 60, 525–529.

    CAS  PubMed  Google Scholar 

  8. G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, T. M. Busch, Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy, Clin. Cancer Res., 2005, 11, 3543–3552.

    Article  CAS  PubMed  Google Scholar 

  9. T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, R. Hilf, Oxygen consumption and diffusion effects in photodynamic therapy, Radiat. Res., 1991, 126, 296–303.

    Article  CAS  PubMed  Google Scholar 

  10. J. P. Henning, R. L. Fournier, J. A. Hampton, A transient mathematical model of oxygen depletion during photodynamic therapy, Radiat. Res., 1995, 142, 221–226.

    Article  CAS  PubMed  Google Scholar 

  11. H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome, Cancer Res., 2004, 64, 7553–7561.

    Article  CAS  PubMed  Google Scholar 

  12. B. W. Pogue, J. A. O’Hara, I. A. Goodwin, C. J. Wilmot, G. P. Fournier, A. R. Akay, H. Swartz, Tumor PO(2) changes during photodynamic therapy depend upon photosensitizer type and time after injection, Comp. Biochem. Physiol., A: Physiol., 2002, 132, 177–184.

    Article  Google Scholar 

  13. T. M. Busch, E. P. Wileyto, S. M. Evans, C. J. Koch, Quantitative spatial analysis of hypoxia and vascular perfusion in tumor sections, Adv. Exp. Med. Biol., 2003, 510, 37–43.

    Article  PubMed  Google Scholar 

  14. H. M. Swartz, Measuring real levels of oxygen in vivo: opportunities and challenges, Biochem. Soc. Trans., 2002, 30, 248–252.

    Article  CAS  PubMed  Google Scholar 

  15. L. C. Clark, E. W. Clark, A personalized history of the Clark oxygen electrode, Int. Anesthesiol. Clin., 1987, 25, 1–29.

    Article  CAS  PubMed  Google Scholar 

  16. D. F. Wilson, J. M. Vanderkooi, T. J. Green, G. Maniara, S. P. DeFeo, D. C. Bloomgarden, A versatile and sensitive method for measuring oxygen, Adv. Exp. Med. Biol., 1987, 215, 71–77.

    Article  CAS  PubMed  Google Scholar 

  17. D. F. Wilson, Oxygen dependent quenching of phosphorescence: a perspective, Adv. Exp. Med. Biol., 1992, 317, 195–201.

    Article  CAS  PubMed  Google Scholar 

  18. B. W. McIlroy, A. Curnow, G. Buonaccorsi, M. A. Scott, S. G. Bown, A. J. MacRobert, Spatial measurement of oxygen levels during photodynamic therapy using time-resolved optical spectroscopy, J. Photochem. Photobiol., B, 1998, 43, 47–55.

    Article  CAS  Google Scholar 

  19. S. A. Vinogradov, L. W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors, Biophys. J., 1996, 70, 1609–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. W. Reed, A. P. Mullins, G. L. Anderson, F. N. Miller, T. J. Wieman, The effect of photodynamic therapy on tumor oxygenation, Surgery, 1989, 106, 94–99.

    CAS  PubMed  Google Scholar 

  21. B. J. Tromberg, A. Orenstein, S. Kimel, S. J. Barker, J. Hyatt, J. S. Nelson, M. W. Berns, In vivo tumor oxygen tension measurements for the evaluation of the efficiency of photodynamic therapy, Photochem. Photobiol., 1990, 52, 375–385.

    Article  CAS  PubMed  Google Scholar 

  22. Q. Chen, Z. Huang, H. Chen, H. Shapiro, J. Beckers, F. W. Hetzel, Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy, Photochem. Photobiol., 2002, 76, 197–203.

    Article  CAS  PubMed  Google Scholar 

  23. B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erickson, M. W. Dewhirst, Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin, Photochem. Photobiol., 2001, 74, 700–706.

    Article  CAS  PubMed  Google Scholar 

  24. A. Curnow, J. C. Haller, S. G. Bown, Oxygen monitoring during 5-aminolaevulinic acid induced photodynamic therapy in normal rat colon. Comparison of continuous and fractionated light regimes, J. Photochem. Photobiol., B, 2000, 58, 149–155.

    Article  CAS  Google Scholar 

  25. P. Babilas, V. Schacht, G. Liebsch, O. S. Wolfbeis, M. Landthaler, R. M. Szeimies, C. Abels, Effects of light fractionation and different fluence rates on photodynamic therapy with 5-aminolaevulinic acid in vivo, Br. J. Cancer, 2003, 88, 1462–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. H. Schouwink, H. Oppelaar, M. Ruevekamp, d. van, V. G. Hart, P. Rijken, P. Baas, F. A. Stewart, Oxygen depletion during and after mTHPC-mediated photodynamic therapy in RIF1 and H-MESO1 tumors, Radiat. Res., 2003, 159, 190–198.

    Article  CAS  PubMed  Google Scholar 

  27. S. Coutier, L. N. Bezdetnaya, T. H. Foster, R. M. Parache, F. Guillemin, Effect of irradiation fluence rate on the efficacy of photodynamic therapy and tumor oxygenation in meta-tetra (hydroxyphenyl) chlorin (mTHPC)-sensitized HT29 xenografts in nude mice, Radiat. Res., 2002, 158, 339–345.

    Article  CAS  PubMed  Google Scholar 

  28. J. Zilberstein, A. Bromberg, A. Frantz, V. Rosenbach-Belkin, A. Kritzmann, R. Pfefermann, Y. Salomon, A. Scherz, Light-dependent oxygen consumption in bacteriochlorophyll-serine-treated melanoma tumors: on-line determination using a tissue-inserted oxygen microsensor, Photochem. Photobiol., 1997, 65, 1012–1019.

    Article  CAS  PubMed  Google Scholar 

  29. B. Chen, B. Ahmed, W. Landuyt, Y. Ni, R. Gaspar, T. Roskams, P. A. de Witte, Potentiation of photodynamic therapy with hypericin by mitomycin C in the radiation-induced fibrosarcoma-1 mouse tumor model, Photochem. Photobiol., 2003, 78, 278–282.

    Article  CAS  PubMed  Google Scholar 

  30. A. Johansson, T. Johansson, M. S. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, S. Andersson-Engels, In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors, J. Biomed. Opt., 2006, 11, 34029.

    Article  PubMed  CAS  Google Scholar 

  31. G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, A. G. Yodh, Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light, Photochem. Photobiol., 2006, 82, 1279–1284.

    Article  CAS  PubMed  Google Scholar 

  32. A. Amelink van der Ploeg van den Heuvel, W. J. de Wolf, D. J. Robinson, H. J. Sterenborg, Monitoring PDT by means of superficial reflectance spectroscopy, J. Photochem. Photobiol., B, 2005, 79, 243–251.

    Article  CAS  Google Scholar 

  33. H. W. Wang, T. C. Zhu, M. E. Putt, M. Solonenko, J. Metz, A. Dimofte, J. Miles, D. L. Fraker, E. Glatstein, S. M. Hahn, A. G. Yodh, Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy, J. Biomed. Opt., 2005, 10, 14004.

    Article  PubMed  CAS  Google Scholar 

  34. G. Kostenich, S. Kimel, S. Peled, A. Orenstein, Monitoring PDT-induced damage using spectrally resolved reflectance imaging of tissue oxygenation, Cancer Lett., 2005, 219, 169–175.

    Article  CAS  PubMed  Google Scholar 

  35. M. S. Thompson, A. Johansson, T. Johansson, S. Andersson-Engels, S. Svanberg, N. Bendsoe, K. Svanberg, Clinical system for interstitial photodynamic therapy with combined on-line dosimetry measurements, Appl. Opt., 2005, 44, 4023–4031.

    Article  PubMed  Google Scholar 

  36. J. H. Woodhams, L. Kunz, S. G. Bown, A. J. MacRobert, Correlation of real-time haemoglobin oxygen saturation monitoring during photodynamic therapy with microvascular effects and tissue necrosis in normal rat liver, Br. J. Cancer, 2004, 91, 788–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. Korbelik, J. Sun, H. Zeng, Ischaemia-reperfusion injury in photodynamic therapy-treated mouse tumours, Br. J. Cancer, 2003, 88, 760–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, A. G. Yodh, In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates, Phys. Med. Biol., 2002, 47, 857–873.

    CAS  PubMed  Google Scholar 

  39. A. Dietze, Q. Peng, P. K. Selbo, O. Kaalhus, C. Muller, S. Bown, K. Berg, Enhanced photodynamic destruction of a transplantable fibrosarcoma using photochemical internalisation of gelonin, Br. J. Cancer, 2005, 92, 2004–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. H. Schouwink, H. Oppelaar, M. Ruevekamp, d. van, V. G. Hart, P. Rijken, P. Baas, F. A. Stewart, Oxygen depletion during and after mTHPC-mediated photodynamic therapy in RIF1 and H-MESO1 tumors, Radiat. Res., 2003, 159, 190–198.

    Article  CAS  PubMed  Google Scholar 

  41. T. H. Pham, R. Hornung, M. W. Berns, Y. Tadir, B. J. Tromberg, Monitoring tumor response during photodynamic therapy using near-infrared photon-migration spectroscopy, Photochem. Photobiol., 2001, 73, 669–677.

    Article  CAS  PubMed  Google Scholar 

  42. R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, B. J. Tromberg, Quantitative near-infrared spectroscopy of cervical dysplasia in vivo, Hum. Reprod., 1999, 14, 2908–2916.

    Article  CAS  PubMed  Google Scholar 

  43. H. M. Swartz, T. Walczak, Developing in vivo EPR oximetry for clinical use, Adv. Exp. Med. Biol., 1998, 454, 243–252.

    Article  CAS  PubMed  Google Scholar 

  44. H. M. Swartz, R. B. Clarkson, The measurement of oxygen in vivo using EPR techniques, Phys. Med. Biol., 1998, 43, 1957–1975.

    Article  CAS  PubMed  Google Scholar 

  45. B. W. Pogue, J. A. O’Hara, K. J. Liu, T. Hasan, H. Swartz, Photodynamic treatment of the RIF-1 tumor with verteporfin with online monitoring of tissue oxygen using electron paramagnetic resonance oximetry, Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, Proc. SPIE–Int. Soc. Opt. Eng., 1999, 3601, 108–104.

    CAS  Google Scholar 

  46. B. W. Pogue, J. A. O’Hara, E. Demidenko, C. M. Wilmot, I. A. Goodwin, B. Chen, H. M. Swartz, T. Hasan, Photodynamic therapy with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity, Cancer Res., 2003, 63, 1025–1033.

    CAS  PubMed  Google Scholar 

  47. T. M. Busch, Local physiological changes during photodynamic therapy, Lasers Surg. Med., 2006, 38, 494–499.

    Article  PubMed  Google Scholar 

  48. R. Turner, Signal sources in bold contrast fMRI, Adv. Exp. Med. Biol., 1997, 413, 19–25.

    Article  CAS  PubMed  Google Scholar 

  49. S. Gross, A. Gilead, A. Scherz, M. Neeman, Y. Salomon, Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI, Nat. Med., 2003, 9, 1327–1331.

    Article  CAS  PubMed  Google Scholar 

  50. J. D. Chapman, M. S. McPhee, N. Walz, M. P. Chetner, C. C. Stobbe, K. Soderlind, M. Arnfield, B. E. Meeker, L. Trimble, P. S. Allen, Nuclear magnetic resonance spectroscopy and sensitizer-adduct measurements of photodynamic therapy-induced ischemia in solid tumors, J. Natl. Cancer Inst., 1991, 83, 1650–1659.

    Article  CAS  PubMed  Google Scholar 

  51. R. Springett, H. M. Swartz, Measurements of oxygen in vivo: overview and perspectives on methods to measure oxygen within cells and tissues, Antioxid. Redox Signal., 2007, 9, 1295–1302.

    Article  CAS  PubMed  Google Scholar 

  52. M. B. Ericson, C. Sandberg, B. Stenquist, F. Gudmundson, M. Karlsson, A. M. Ros, A. Rosen, O. Larko, A. M. Wennberg, I. Rosdahl, Photodynamic therapy of actinic keratosis at varying fluence rates: assessment of photobleaching, pain and primary clinical outcome, Br. J. Dermatol., 2004, 151, 1204–1212.

    Article  CAS  PubMed  Google Scholar 

  53. A. Maier, F. Tomaselli, U. Anegg, P. Rehak, B. Fell, S. Luznik, H. Pinter, F. M. Smolle-Juttner, Combined photodynamic therapy and hyperbaric oxygenation in carcinoma of the esophagus and the esophago-gastric junction, Eur. J. Cardiothorac. Surg., 2000, 18, 649–654.

    Article  CAS  PubMed  Google Scholar 

  54. J. H. Woodhams, PhD Thesis, 2006.

    Google Scholar 

  55. A. Curnow, B. W. McIlroy, M. J. Postle-Hacon, A. J. MacRobert, S. G. Bown, Light dose fractionation to enhance photodynamic therapy using 5-aminolevulinic acid in the normal rat colon, Photochem. Photobiol., 1999, 69, 71–76.

    Article  CAS  PubMed  Google Scholar 

  56. B. W. Henderson, T. M. Busch, J. W. Snyder, Fluence rate as a modulator of PDT mechanisms, Lasers Surg. Med., 2006, 38, 489–493.

    Article  PubMed  Google Scholar 

  57. A. Tremblay, S. Leroy, L. Freitag, M. C. Copin, P. H. Brun, C. H. Marquette, Endobronchial phototoxicity of WST 09 (Tookad), a new fast-acting photosensitizer for photodynamic therapy: preclinical study in the pig, Photochem. Photobiol., 2003, 78, 124–130.

    Article  CAS  PubMed  Google Scholar 

  58. S. Mitra, T. H. Foster, Carbogen breathing significantly enhances the penetration of red light in murine tumours in vivo, Phys. Med. Biol., 2004, 49, 1891–1904.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodhams, J.H., MacRobert, A.J. & Bown, S.G. The role of oxygen monitoring during photodynamic therapy and its potential for treatment dosimetry. Photochem Photobiol Sci 6, 1246–1256 (2007). https://doi.org/10.1039/b709644e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b709644e

Navigation