Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 413))

Abstract

When a non-diffusible paramagnetic contrast agent is present in the blood, the mechanism of MRI signal loss is as follows. The contrast agent has a magnetic susceptibility higher than that of blood or brain tissue, and thus creates magnetic field inhomogeneities within and surrounding the vessels in which it passes. Gradient-echo imaging is highly sensitive to such quasi-random non-uniformities of the magnetic field, by allowing the dephasing effect of the magnetic field inhomogeneity to accumulate over a period of 40–80 ms before data acquisition. Within a voxel containing blood vessels the nuclear spins experience spatially varying magnetic fields, and consequently precess at different rates depending on position. The result is a loss of phase coherence within the voxel, and thus a decrease in signal relative to when the contrast agent is absent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stehling M.K., Turner R., Mansfield P., 1991, Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science 254:43–50.

    Article  ADS  Google Scholar 

  2. Pauling, L. and Coryell, CD., 1936, The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci USA 22:210–216.

    Google Scholar 

  3. Brindle, K.M., Brown, F.F., Campbell, I.D., Grathwohl, C, Kuchel, P.W., 1979, Application of spin-echo nuclear magnetic resonance to whole-cell systems. Biochem J, 180:37–44.

    Google Scholar 

  4. Thulborn, K.R., Waterton, J.C., Matthews, P.M., Radda, G.K., 1982, Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim. Biophys. Acta. 714:265–270.

    Article  Google Scholar 

  5. Brooks, R.A., Di Chiro, G., 1987, Magnetic resonance imaging of stationary blood: a review. Med. Phys. 14:903–913.

    Article  Google Scholar 

  6. Ogawa, S., Lee, T-M., Nayak, A.S., Glynn, P., 1990, Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14:68–78.

    Article  Google Scholar 

  7. Turner, R., LeBihan, D., Moonen, C.T.W., DesPres, D. and Frank, J., 1991, Echo-planar time course MRI of cat brain oxygenation changes, Magn. Reson. Med., 22:159–166.

    Google Scholar 

  8. Turner, R., Le Bihan, D., Maier, J., Vavrek, R., Hedges, L.K., Pekar, J., 1990, Echo-planar imaging of intravoxel incoherent motion. Radiology 177:407–414.

    Google Scholar 

  9. Doyle, M., Turner, R., Cawley, M., Glover, P., Morris, G.K., Chapman, B., Ordidge, R.J., Coxon, R., Coupland, R.E., Worthington, B.S., Mansfield, P., 1986, Real-time cardiac imaging of adults at video frame rates by magnetic resonance imaging. Lancet ii:682.

    Article  Google Scholar 

  10. Jezzard, P., Heineman, F., Taylor, J., Despres, D., Wen, H., Balaban, R.S. and Turner, R., 1994, Comparison of EPI gradient-echo contrast changes in cat brain caused by respiratory challenges with direct simultaneous spectrophotometric evaluation of cerebral oxygenation via a cranial window, NMR in Biomedicine, 7:35–44.

    Article  Google Scholar 

  11. Ogawa, S, Tank, D.W., Menon, R., Ellerman, J.M., Kim, S-G., Merkle, H. and Ugurbil, K., 1992, Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging, Proc. Natl. Acad. Sci. USA, 89:5951–5955.

    Article  ADS  Google Scholar 

  12. Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H-M., Brady, T.J., Rosen, B.R., 1992, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679.

    Article  ADS  Google Scholar 

  13. Fox, P.T. and Raichle, M.E., 1986, Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA 83:1140–4.

    Article  ADS  Google Scholar 

  14. Penfield, W., 1933, The evidence for a cerebral vascular mechanism in epilepsy. Ann Intern Med 7:303–310.

    Article  Google Scholar 

  15. Turner, R., Jezzard, P., Wen, H., Kwong, K.K., Le Bihan, D., Zeffiro, T., Balaban, R.S., 1993, Functional mapping of the human visual cortex at 4 tesla and 1.5 tesla using deoxygenation contrast EPI. Magn. Reson. Med. 29:277–281.

    Article  Google Scholar 

  16. Fisel, C.R., Ackerman, J.L., Buxton, R.B., Garrido, L., Belliveau, J.W., Rosen, B.R., Brady, T.J., 1991, MR contrast due to microscopically heterogenous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn. Reson. Med. 17:336–347.

    Article  Google Scholar 

  17. Ogawa, S., Menon, R.S., Tank, D.W., Kim, S-G., Merkle, H., Ellerman, J.M. and Ugurbil, K., 1993, Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. Biophys. J. 64:803–812.

    Article  Google Scholar 

  18. Weisskoff, R.M., Zuo, C.S., Boxerman, J.L. and Rosen, B.R., 1994, Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn. Reson. Med., 31:601–610.

    Article  Google Scholar 

  19. Kennan, R.P., Zhong, J. and Gore, J.C., 1994, Intravascular susceptibility contrast mechanisms in tissues. Magn. Reson. Med., 31:9–21.

    Article  Google Scholar 

  20. Boxerman, J.L., Weisskoff, R.M., Kwong, K.K., Davis, T.L., Rosen, B.R., 1994, The intravascular contribution to fMRI signal change: modelling and diffusion-weighted in vivo studies. Proc. Soc. Magn. Reson. (1994)2:619.

    Google Scholar 

  21. Menon, R.S., Hu, X., Adriany, G., Andersen, P., Ogawa, S. and Ugurbil, K., 1994, Comparison of spinecho EPI, asymmetric spin-echo EPI and conventional EPI applied to functional neuroimaging: the effect of flow crushing gradients on the BOLD signal. Proc. Soc. Magn. Reson. (1994) 2:622.

    Google Scholar 

  22. Hossmann, K-A., Ueki, M., Kocher, M. and Linn, F., 1991, Multiparametric imaging of coupling between functional activity, blood flow and metabolism uder physiological and pathophysiologic conditions, in Brain Work and Mental Activation, Alfred Benzon Symposium 31, (Lassen NA, Ingvar DH, Raichle ME and Friberg L, eds) pp 158–173. Copenhagen: Munksgaard.

    Google Scholar 

  23. Duling, B., Matsuki, T., Segal, S., Conduction in the resistance-vessel wall: contributions to vasomotor tone and vascular communication. In: Bevan, J.A. ed. The Resistance Vasculature. Totowa, NJ: Humana Press, 1991:193-215.

    Google Scholar 

  24. Frostig, R.D., Lieke, E.E., Ts’o, D.Y., Grinvald, A., 1990, Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in-vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad. Sci USA 87:6082–6086.

    Article  ADS  Google Scholar 

  25. Turner, R. and Grinvald, A., 1994, Direct visualization of patterns of deoxygenation and reoxygenation in monkey cortical vasculature during functional brain activation. Proc. Soc. Magn. Reson. (1994) 1:430.

    Google Scholar 

  26. Lai, S., Hopkins, A.L., Haacke, E.M., Li, D., Wasserman, B.A., Buckley, P., Friedman, L., Meltzer, H., Hedera, P., Friedland, R., 1993, Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5 T: preliminary results. Magn. Reson. Med. 30:387–392.

    Article  Google Scholar 

  27. Segebarth, C, Belle, V., Delon, C, Massarelli, R., Decety, J., Le Bas, J.F., Decorps, M., Benabid, A.L., 1994, Functional MRI of the human brain. Predominance of signals from extracerebral veins. NeuroReport 5, 813–816.

    Article  Google Scholar 

  28. Henkelman, R.M., Neil, J.J., Xiang, Q-S., 1994, A quantitative interpretation of IVIM measurements of vascular perfusion in the rat brain. Magn. Reson. Med. 32:464–469.

    Article  Google Scholar 

  29. Wiederman, M.P., 1963, Dimensions of blood vessels from distributing artery to collecting vein. Circ. Res. 12:375.

    Article  Google Scholar 

  30. Frahm, J., Merboldt, K-D., Hänicke, W., Kleinschmidt, A., Boecker, H., 1994, Brain or vein-oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR in Biomedicine 7:45–53.

    Article  Google Scholar 

  31. Baker, J.R., Hoppel, B.E., Stern, C.E., Kwong, K.K., Weisskoff, R.M., Rosen, B.R., 1993, Dynamic functional imaging of the complete human cortex using gradient echo and asymmetric spin-echo echo-planar magnetic resonance imaging. Proc. Soc. Magn. Reson. Med. (1993) 3:1400.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Turner, R. (1997). Signal Sources in Bold Contrast FMRI. In: Villringer, A., Dirnagl, U. (eds) Optical Imaging of Brain Function and Metabolism 2. Advances in Experimental Medicine and Biology, vol 413. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0056-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0056-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0058-6

  • Online ISBN: 978-1-4899-0056-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics