Skip to main content

Advertisement

Log in

Analyzing effects of photodynamic therapy with 5-aminolevulinic acid (ALA) induced protoporphyrin IX (PPIX) in urothelial cells using reverse phase protein arrays

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PPIX) is clinically established approach for a number of defined applications. However, in order to optimize the therapeutic benefits of PDT, the specific mode of cell destruction should be better defined. Apoptosis is favored over necrosis for clinical practice as the latter causes more side-effects. In the present study, we analyse PDT-induced cell death and its correlation to various PDT parameters (different doses applied, time after PDT treatment) in vitro using reverse phase protein arrays. Human urothelial cell lines with varying degrees of differentiation (UROtsa, RT4, RT112, J82) were subjected to in vitro-PDT using increasing doses of irradiation. In addition, positive controls for apoptosis, necrosis and un-/specific cellular damage were included. Cells were harvested over a specified time course, lysed and arrayed onto nitrocellulose-covered glass slides. The arrays were analyzed for expression of apoptosis-related proteins by immunohistochemistry. Analysis of caspase-3 and -9 expression, the activation of HIF-1α, Bcl2, Cox2 and the phosphorylation of AKT reveals signal activation due to a PDT-stimulus in correlation with the positive controls. Data were analyzed by unsupervised hierarchical clustering and depicted as a heat map revealing cell-specific patterns of pathway stimulation. Higher differentiated phenotypes showed a more distinct signal response in general and a higher apoptotic response in detail. Lower differentiated cell lines lost pathway regulation capabilities according to their state of dedifferentiation. Reverse phase protein arrays are a promising technique for signal pathway profiling: they exceed the range of traditional western blots by sensitivity, high-throughput capability, minimal sample consumption and easy quantification of results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Silva, P. Filipe, P. Morliere, J. C. Maziere, J. P. Freitas, J. L. Cirne de Castro, R. Santus, Photodynamic therapies: principles and present medical applications, Biomed. Mater. Eng., 2006, 16, S147–154.

    CAS  PubMed  Google Scholar 

  2. C. J. Kelty, N. J. Brown, M. W. Reed, R. Ackroyd, The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis, Photochem. Photobiol. Sci., 2002, 1, 158–168.

    Article  CAS  PubMed  Google Scholar 

  3. J. F. Kerr, A. H. Wyllie, A. R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, 1972, 26, 239–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. C. Moor, Signaling pathways in cell death and survival after photodynamic therapy, J. Photochem. Photobiol., B, 2000, 57, 1–13.

    Article  CAS  Google Scholar 

  5. N. L. Oleinick, R. L. Morris, I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochem. Photobiol. Sci., 2002, 1, 1–21.

    Article  CAS  PubMed  Google Scholar 

  6. X. Y He, R. A. Sikes, S. Thomsen, L. W. K. Chung, S. L. Jacques, Photodynamic Therapy with Photofrin II, induces programmed cell death in carcinoma cell lines, Photochem. Photobiol., 1994, 59, 468–473.

    Article  CAS  PubMed  Google Scholar 

  7. B. B. Noodt, K. Berg, T. Stokke, Q. Peng, J. M. Nesland, Apoptosis and necrosis induced with light and 5-aminolaevulinic acid-derived protoporphyrin IX, Br. J. Cancer, 1996, 74, 22–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Z. Darzynkiewicz, G. Juan, X. Li, W. Gorczyca, T. Murakami, F. Traganos, Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis), Cytometry, 1997, 27, 1–20.

    Article  CAS  PubMed  Google Scholar 

  9. I. E. Furre, M. T. Moller, S. Shahzidi, J. M. Nesland, Q. Peng, Involvement of both caspase-dependent and -independent pathways in apoptotic induction by hexaminolevulinate-mediated photodynamic therapy in human lymphoma cells, Apoptosis, 2006, 11, 2031–2042.

    Article  CAS  PubMed  Google Scholar 

  10. P. Agostinis, E. Buytaert, H. Breyssens, N. Hendrickx, Regulatory pathways in photodynamic therapy induced apoptosis, Photochem. Photobiol. Sci., 2004, 3, 721–729.

    Article  CAS  PubMed  Google Scholar 

  11. L. Y. Xue, S. M. Chiu, N. L. Oleinick, Photodynamic therapy-induced death of MCF-7 human breast cancer cells: a role for caspase-3 in the late steps of apoptosis but not for the critical lethal event, Exp. Cell Res., 2001, 263, 145–155.

    Article  CAS  PubMed  Google Scholar 

  12. S. Cory, J. M. Adams, The Bcl2 family: regulators of the cellular life-or-death switch, Nat. Rev. Cancer, 2002, 2, 647–656.

    Article  CAS  PubMed  Google Scholar 

  13. N. A. Thornberry, Y. Lazebnik, Caspases: enemies within, Science, 1998, 281, 1312–1316.

    Article  CAS  PubMed  Google Scholar 

  14. B. C. Chen, Y. S. Chang, J. C. Kang, M. J. Hsu, J. R. Sheu, T. L. Chen, C. M. Teng, C. H. Lin, Peptidoglycan induces nuclear factor-kappaB activation and cyclooxygenase-2 expression via Ras, Raf-1, and ERK in RAW 264.7 macrophages, J. Biol. Chem., 2004, 14, 20889–20897.

    Article  CAS  Google Scholar 

  15. J. Seidl, J. Rauch, R. C. Krieg, S. Appel, R. Baumgartner, R. Knuechel, Optimization of differential effectiveness between normal and tumor urothelial cells using 5-aminolevulinic acid induced protoporphyrin IX as sensitizer, Int. J. Cancer, 2001, 92, 671–677.

    Article  CAS  PubMed  Google Scholar 

  16. S. M. Schieke, C. von Montfort, D. P. Buchczyk, A. Timmer, S. Grether-Beck, J. Krutmann, N. J. Holbrook, L. O. Klotz, Singlet oxygen-induced attenuation of growth factor signaling: possible role of ceramides, Free Radical Res., 2004, 38, 729–737.

    Article  CAS  Google Scholar 

  17. S. Zhuang, I. E. Kochevar, Singlet oxygen-induced activation of Akt/protein kinase B is independent of growth factor receptors, Photochem. Photobiol., 2003, 78, 361–371.

    Article  CAS  PubMed  Google Scholar 

  18. R. J. Arceci, Tumor cell survival and resistance to therapy, Curr. Opin. Hematol., 1996, 3, 279–287.

    Article  CAS  PubMed  Google Scholar 

  19. H. J. Guchelaar, A. Vermes, I. Vermes, C. Haanen, Apoptosis: molecular mechanisms and implications for cancer chemotherapy, Pharm. World Sci., 1997, 19, 119–125.

    Article  CAS  PubMed  Google Scholar 

  20. B. Antonsson, J. C. Martinou, The Bcl-2 protein family, Exp. Cell Res., 2000, 256, 50–57.

    Article  CAS  PubMed  Google Scholar 

  21. D. M. Hockenbery, Z. N. Oltvai, X. M. Yin, C. L. Milliman, S. J. Korsmeyer, Bcl-2 functions in an antioxidant pathway to prevent apoptosis, Cell, 1993, 75, 241–251.

    Article  CAS  PubMed  Google Scholar 

  22. J. Yang, X. Liu, K. Bhalla, C. N. Kim, A. M. Ibrado, J. Cai, T. I. Peng, D. P. Jones, X. Wang, Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked, Science, 1997, 275, 1129–1132.

    Article  CAS  PubMed  Google Scholar 

  23. A. Ferrario, A. M. Fisher, N. Rucker, C. J. Gomer, Celecoxib and NS-398 enhance photodynamic therapy by increasing in vitro apoptosis and decreasing in vivo inflammatory and angiogenic factors, Cancer Res., 2005, 65, 9473–9478.

    Article  CAS  PubMed  Google Scholar 

  24. S. Mitra, S. E. Cassar, D. J. Niles, J. A. Puskas, J. G. Frelinger, T. H. Foster, Photodynamic therapy mediates the oxygen-independent activation of hypoxia-inducible factor 1alpha, Mol. Cancer Ther., 2006, 5, 3268–3274.

    Article  CAS  PubMed  Google Scholar 

  25. M. I. Koukourakis, A. Giatromanolaki, J. Skarlatos, L. Corti, S. Blandamura, M. Piazza, K. C. Gatter, A. L. Harris, Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy, Cancer Res., 2001, 61, 1830–1832.

    CAS  PubMed  Google Scholar 

  26. J. L. Petzoldt, I. M. Leigh, P. G. Duffy, C. Sexton, J. R. Masters, Immortalisation of human urothelial cells, Urol. Res., 1995, 23, 377–380.

    Article  CAS  PubMed  Google Scholar 

  27. C. C. Rigby, L. M. Franks, A human tissue culture cell line from a transitional cell tumor of the urinary bladder: groeth, chromosome pattern and ultrastructure, Br. J. Cancer, 1970, 24, 746–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. C. J. Marshall, L. M. Franks, A. W. Carbonell, Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas, J. Natl. Cancer Inst., 1977, 58, 1743–1751.

    Article  CAS  PubMed  Google Scholar 

  29. P. J. Hepburn and J. R. W. Masters, The biological characteristics of continuous cell lines derived from human bladder, in The pathology of bladder cancer, ed. G. T. Bryan and S. M. Cohen, CRC Press Inc, Florida, 1983, vol. II, pp. 213–227.

    Google Scholar 

  30. C. O’Toole, Z. H. Price, Y. Ohnuki, B. Unsgaard, Ultrastructure, karyology and immunology of a cell line originated from a human transitional-cell carcinoma, Br. J. Cancer, 1978, 38, 64–67.

    Article  PubMed  PubMed Central  Google Scholar 

  31. R. C. Krieg, H. Messmann, J. Rauch, S. Seeger, R. Knuechel, Metabolic characterization of tumor cell specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells, Photochem. Photobiol., 2002, 76, 518–525.

    Article  CAS  PubMed  Google Scholar 

  32. A. V. Kachur, S. W. Tuttle, J. E. Biaglow, Autoxidation of ferrous ion complexes: a method for the generation of hydroxyl radicals, Radiation Res., 1998, 150, 475–482.

    Article  CAS  PubMed  Google Scholar 

  33. R. C. Krieg, R. Knuechel, E. Schiffman, L. A. Liotta, E. F. Petricoin III, P. C. Herrmann, Cancer Altered Metabolism Associated with Cytochrome c Oxidase Subunit Level Variations, Proteomics, 2004, 4, 2789–2795.

    Article  CAS  PubMed  Google Scholar 

  34. C. P. Paweletz, D. K. Ornstein, M. J. Roth, V. E. Bichsel, J. W. Gillespie, V. S. Calvert, C. D. Vocke, S. M. Hewitt, P. H. Duray, J. Herring, Q. H. Wang, N. Hu, W. M. Linehan, P. R. Taylor, L. A. Liotta, M. R. Emmert-Buck M. R. E. F. 3rd Petricoin EF, Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma, Cancer Res., 2000, 60, 6293–6297.

    CAS  PubMed  Google Scholar 

  35. C. P. Paweletz, L. Charboneau, V. E. Bichsel, N. L. Simone, T. Chen, J. W. Gillespie, M. R. Emmert-Buck, M. J. Roth, E. F. Petricoin III, L. A. Liotta, Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front, Oncogene, 2001, 20, 1981–1989.

    Article  CAS  PubMed  Google Scholar 

  36. A. Sturn, J. Quackenbush, Z. Trajanoski, Genesis: Cluster analysis of microarray data, Bioinformatics, 2002, 18, 207–208.

    Article  CAS  PubMed  Google Scholar 

  37. R. M. Wadkins, E. A. Jares-Erijman, R. Klement, A. Rudiger, T. M. Jovin, Actinomycin D binding to single-stranded DNA: sequence specificity and hemi-intercalation model from fluorescence and 1H NMR spectroscopy, J. Mol. Biol., 1996, 262, 53–68.

    Article  CAS  PubMed  Google Scholar 

  38. T. G. Cotter, Induction of apoptosis in cells of the immune system by cytotoxic stimuli, Semin. Immunol., 1992, 4, 399–405.

    CAS  PubMed  Google Scholar 

  39. K. Schlottman, F. P. Wachs, R. C. Krieg, F. Kullmann, J. Scholmerich, G. Rogler, Characterization of bile salt-induced apoptosis in colon cancer cell lines, Cancer Res., 2000, 60, 4270–4276.

    CAS  PubMed  Google Scholar 

  40. Q. M Chen, J. Liu, J. B. Merrett, Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts, Biochem. J., 2000, 347, 543–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. N. Takeyama, S. Miki, A. Hirakawa, T. Tanaka, Role of the mitochondrial permeability transition and cytochrome C release in hydrogen peroxide-induced apoptosis, Exp. Cell Res., 2002, 274, 16–24.

    Article  CAS  PubMed  Google Scholar 

  42. M. Benderdour, K. Hess, M. Dzondo-Gadet, P. Nabet, F. Belleville, B. Dousset, Boron modulates extracellular matrix and TNF alpha synthesis in human fibroblasts. Biochem, Biophys. Res. Commun., 1998, 29, 746–751.

    Article  Google Scholar 

  43. M. Levy, M. Spino, S. E. Read, Colchicine: a state-of-the-art review, Pharmacotherapy, 1991, 11, 196–211.

    CAS  PubMed  Google Scholar 

  44. G. Villani, G. Attardi, In vivo measurements of respiration control by cytochrome c oxidase and in situ analysis of oxidative phosphorylation, Methods Cell. Biol., 2001, 65, 119–131.

    Article  CAS  PubMed  Google Scholar 

  45. M. Tomasz, R. Lipman, D. Chowdary, J. Pawlak, G. L. Verdine, K. Nakanishi, Isolation and structure of a covalent cross-link adduct between mitomycin C and DNA, Science, 1987, 235, 1204–1208.

    Article  CAS  PubMed  Google Scholar 

  46. J. C. Allen, G. E. Lindenmayer, A. Schwartz, An allosteric explanation for ouabain-induced time-dependent inhibition of sodium, potassium-adenosine triphosphatase, Arch. Biochem. Biophys., 1970, 141, 322–328.

    Article  CAS  PubMed  Google Scholar 

  47. M. Souhrada, J. F. Souhrada, Inhibitory effect of staurosporine on protein kinase C stimulation of airway smooth muscle cells, Am. Rev. Respir. Dis., 1993, 148, 425–430.

    Article  CAS  PubMed  Google Scholar 

  48. M. Wakakura, I. Utsunomiya-Kawasaki, S. Ishikawa, Rapid increase in cytosolic calcium ion concentration mediated by acetylcholine receptors in cultured retinal neurons and Müller cells, Graefes Arch. Clin. Exp. Ophthalmol., 1998, 236, 934–939.

    Article  CAS  PubMed  Google Scholar 

  49. L. Stryer, Biochemie, Spektrum Akademischer Verlag, Heidelberg-Berlin-Oxford, 4th edn, 1995.

    Google Scholar 

  50. K. Doreswamy, B. Shrilatha, T. Rajeshkumar Muralidhara, Nickel-induced oxidative stress in testis of mice: evidence of DNA damage and genotoxic effects, J. Androl., 2004, 25, 996–1003.

    Article  CAS  PubMed  Google Scholar 

  51. E Rudolf, M. Cervinka, The role of intracellular zinc in chromium(vi)-induced oxidative stress, DNA damage and apoptosis, Chem. Biol. Interact., 2006, 162, 212–227.

    Article  CAS  PubMed  Google Scholar 

  52. C. S. Lieber, L. M. DeCarli, Hepatic microsomal ethanol-oxidizing system. In vitro characteristics and adaptive properties in vivo, J. Biol. Chem., 1970, 245, 2505–2512.

    Article  CAS  PubMed  Google Scholar 

  53. H. Weber, S. Hühns, L. Jonas, G. Sparmann, M. Bastian, P. Schuff-Werner, Hydrogen peroxide-induced activation of defense mechanisms against oxidative stress in rat pancreatic acinar AR42J cells, Free Radical Biol. Med., 2007, 42, 830–841.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Krieg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieg, R.C., Herr, A., Raupach, K. et al. Analyzing effects of photodynamic therapy with 5-aminolevulinic acid (ALA) induced protoporphyrin IX (PPIX) in urothelial cells using reverse phase protein arrays. Photochem Photobiol Sci 6, 1296–1305 (2007). https://doi.org/10.1039/b704464j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b704464j

Navigation