Skip to main content
Log in

Involvement of both caspase-dependent and -independent pathways in apoptotic induction by hexaminolevulinate-mediated photodynamic therapy in human lymphoma cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a cancer treatment based on the interaction of a photosensitizer, light and oxygen. PDT with the endogenous photosensitizer, protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) or its derivatives is a modification of this treatment modality with successful application in dermatology. However, the mechanism of cell destruction by ALA-PDT has not been elucidated. In this study a human T-cell lymphoma Jurkat cell line was treated with PDT using hexaminolevulinate (HAL, hexylester of ALA). Four hours following treatment nearly 80% of the cells exhibited typical apoptotic features. Mitochondrial pro-apoptotic proteins were evaluated by Western blots in subcellular fractionated samples. PDT caused cytosolic translocation of cytochrome c and nuclear redistribution of apoptosis-inducing factor (AIF), but the release of mitochondrial Smac/DIABLO, Omi/HtrA2 and EndoG was not observed. The release of cytochrome c was followed by the cleavage of caspase-9 and caspase-3 as well as its downstream substrates, together with oligonucleosomal DNA fragmentation. The pan-caspases inhibitor, z-VAD.fmk, prevented oligonucleosomal DNA fragmentation, but failed to inhibit PDT-mediated apoptosis. The apoptotic induction by AIF-mediated caspase-independent pathway was also found after HAL-PDT with large-scale DNA fragmentation in the presence of z-VAD.fmk. These results demonstrate that cytochrome c-mediated caspase-dependent pathway and AIF-induced caspase-independent pathway are simultaneously involved in the apoptotic induction by PDT. When the cytochrome c-induced caspase-dependent pathway is blocked, the cells go into apoptosis via AIF-mediated pathway, clearly demonstrating that the cytochrome c-mediated caspase-dependent pathway is not required for such apoptotic induction. This finding may have an impact on improved PDT effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  PubMed  CAS  Google Scholar 

  2. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  3. Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  4. Verhagen AM, Ekert PG, Pakusch M et al (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    Article  PubMed  CAS  Google Scholar 

  5. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  PubMed  CAS  Google Scholar 

  6. Liu X, Li P, Widlak P et al (1998) The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA 95:8461–8466

    Article  PubMed  CAS  Google Scholar 

  7. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    Article  PubMed  CAS  Google Scholar 

  8. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  PubMed  CAS  Google Scholar 

  9. Verhagen AM, Silke J, Ekert PG et al (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277:445–454

    Article  PubMed  CAS  Google Scholar 

  10. Hegde R, Srinivasula SM, Zhang Z et al (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277:432–438

    Article  PubMed  CAS  Google Scholar 

  11. Dougherty TJ, Gomer CJ, Henderson BW et al (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  PubMed  CAS  Google Scholar 

  12. Peng Q, Warloe T, Berg K et al (1997) 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer 79:2282–2308

    Article  PubMed  CAS  Google Scholar 

  13. Peng Q (2006) Editorial: photodynamic therapy and detection. J Environ Pathol Toxicol Oncol 25:1–6

    PubMed  Google Scholar 

  14. Gaullier JM, Berg K, Peng Q et al (1997) Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. Cancer Res 57:1481–1486

    PubMed  CAS  Google Scholar 

  15. Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM (1997) 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem Photobiol 65:235–251

    PubMed  CAS  Google Scholar 

  16. Noodt BB, Berg K, Stokke T, Peng Q, Nesland JM (1996) Apoptosis and necrosis induced with light and 5-aminolaevulinic acid- derived protoporphyrin IX. Br J Cancer 74:22–29

    PubMed  CAS  Google Scholar 

  17. Agarwal ML, Larkin HE, Zaidi SI, Mukhtar H, Oleinick NL (1993) Phospholipase activation triggers apoptosis in photosensitized mouse lymphoma cells. Cancer Res 53:5897–5902

    PubMed  CAS  Google Scholar 

  18. Oleinick NL, Evans HH (1998) The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res 150:S146–S156

    PubMed  Google Scholar 

  19. Gomer CJ, Ferrario A, Hayashi N, Rucker N, Szirth BC, Murphree AL (1988) Molecular, cellular, and tissue responses following photodynamic therapy. Lasers Surg Med 8:450–463

    PubMed  CAS  Google Scholar 

  20. Iinuma S, Farshi SS, Ortel B, Hasan T (1994) A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin [published erratum appears in Br J Cancer 1994 Dec;70(6):1283]. Br J Cancer 70:21–28

    PubMed  CAS  Google Scholar 

  21. Eggen I, Nesland JM, Peng Q (2000) Photodynamic effect on human lymphoma and leukemia cells with 5-aminolevulinic acid or its hexylester. Porphyrins 9:220–226

    Google Scholar 

  22. Kessel D, Luo Y (1998) Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B 42:89–95

    Article  PubMed  CAS  Google Scholar 

  23. Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  24. Nicholson DW, Ali A, Thornberry NA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  PubMed  CAS  Google Scholar 

  25. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184

    Article  PubMed  CAS  Google Scholar 

  26. Susin SA, Daugas E, Ravagnan L et al (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571–580

    Article  PubMed  CAS  Google Scholar 

  27. Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63–67

    Article  PubMed  CAS  Google Scholar 

  28. Martinez-Caballero S, Dejean LM, Jonas EA, Kinnally KW (2005) The role of the mitochondrial apoptosis induced channel MAC in cytochrome c release. J Bioenerg Biomembr 37:155–164

    Article  PubMed  CAS  Google Scholar 

  29. Antonsson B (2004) Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem 256–257:141–155

    Article  PubMed  Google Scholar 

  30. Furre IE, Shahzidi S, Luksiene Z et al (2005) Targeting PBR by hexaminolevulinate-mediated photodynamic therapy induces apoptosis through translocation of apoptosis-inducing factor in human leukemia cells. Cancer Res 65:11051–11060

    Article  PubMed  CAS  Google Scholar 

  31. Verma A, Nye JS, Snyder SH (1987) Porphyrins are endogenous ligands for the mitochondrial (peripheral-type) benzodiazepine receptor. Proc Natl Acad Sci USA 84:2256–2260

    Article  PubMed  CAS  Google Scholar 

  32. Snyder SH, Verma A, Trifiletti RR (1987) The peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands. FASEB J 1:282–288

    PubMed  CAS  Google Scholar 

  33. Pastorino JG, Simbula G, Gilfor E, Hoek JB, Farber JL (1994) Protoporphyrin IX, an endogenous ligand of the peripheral benzodiazepine receptor, potentiates induction of the mitochondrial permeability transition and the killing of cultured hepatocytes by rotenone. J Biol Chem 269:31041–31046

    PubMed  CAS  Google Scholar 

  34. Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22:4385–4399

    Article  PubMed  CAS  Google Scholar 

  35. Stoica BA, Movsesyan VA, Knoblach SM, Faden AI (2005) Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins. Mol Cell Neurosci 29:355–371

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furre, I.E., Møller, M.T.N., Shahzidi, S. et al. Involvement of both caspase-dependent and -independent pathways in apoptotic induction by hexaminolevulinate-mediated photodynamic therapy in human lymphoma cells. Apoptosis 11, 2031–2042 (2006). https://doi.org/10.1007/s10495-006-0190-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0190-x

Keywords

Navigation