Skip to main content

Advertisement

Log in

Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells

  • Short Communication
  • Published:
Oncogene Submit manuscript

Abstract

Galectin-1 (Gal-1), a homodimeric prototype of the galectins with a single carbohydrate-recognition domain, was recently identified as being overexpressed in tumor-associated capillary endothelial cells. The role of Gal-1 in endothelial cellular functions and the mechanism of action of Gal-1 remain unknown. Neuropilin-1 (NRP1) is a neuronal receptor that mediates repulsive growth cone guidance, and NRP1 functions in endothelial cells as a coreceptor (with vascular endothelial growth factor receptors (VEGFRs)) for VEGF165. In this study, we found that Gal-1 was overexpressed in the tumor-associated endothelial cells of oral squamous cell carcinomas (P<0.001). Gal-1 increased the proliferation and adhesion of endothelial cells, and enhanced cell migration in combination with VEGF165. Surprisingly, Gal-1 selectively bound NRP1 via the carbohydrate-recognition domain, but did not bind VEGFR-1, VEGFR-2 or VEGFR-3. The Gal-1–NRP1 interaction mediated the migration and adhesion of endothelial cells. The binding of Gal-1 to NRP1 enhanced VEGFR-2 phosphorylation and stimulated the activation of the mitogen activated protein (MAP) kinases SAPK1/JNK (stress activated protein kinase-1/c-Jun NH2-terminal kinase). These findings show, for the first time, that Gal-1 can directly bind to NRP1 on endothelial cells, and can promote the NRP1/VEGFR-2-mediated signaling pathway as well as NRP1-mediated biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Camby I, Le Mercier M, Lefranc F, Kiss R . (2006). Galectin-1: a small protein with major functions. Glycobiology 16: 137R–157R.

    Article  CAS  Google Scholar 

  • Castro-Rivera E, Ran S, Thorpe P, Minna JD . (2004). Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci USA 101: 11432–11437.

    Article  CAS  Google Scholar 

  • Chiang WF, Liu SY, Fang LY, Lin CN, Wu MH, Chen YC et al. (2007). Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncol (in press).

  • Clausse N, van den Brule F, Waltregny D, Garnier F, Castronovo V . (1999). Galectin-1 expression in prostate tumor-associated capillary endothelial cells is increased by prostate carcinoma cells and modulates heterotypic cell-cell adhesion. Angiogenesis 3: 317–325.

    Article  CAS  Google Scholar 

  • Elola MT, Chiesa ME, Alberti AF, Mordoh J, Fink NE . (2005). Galectin-1 receptors in different cell types. J Biomed Sci 12: 13–29.

    Article  CAS  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J . (2003). The biology of VEGF and its receptors. Nat Med 9: 669–676.

    Article  CAS  Google Scholar 

  • Fischer C, Sanchez-Ruderisch H, Welzel M, Wiedenmann B, Sakai T, André S et al. (2005). Galectin-1 interacts with the {alpha. J Biol Chem 280: 37266–37277.

    Article  CAS  Google Scholar 

  • Fons P, Herault JP, Delesque N, Tuyaret J, Bono F, Herbert JM . (2004). VEGF-R2 and neuropilin-1 are involved in VEGF-A-induced differentiation of human bone marrow progenitor cells. J Cell Physiol 200: 351–359.

    Article  CAS  Google Scholar 

  • Gaudet AD, Steeves JD, Tetzlaff W, Ramer MS . (2005). Expression and functions of galectin-1 in sensory and motoneurons. Curr Drug Targets 6: 419–425.

    Article  CAS  Google Scholar 

  • Glinsky VV, Huflejt ME, Glinsky GV, Deutscher SL, Quinn TP . (2000). Effects of Thomsen-Friedenreich antigen-specific peptide P-30 on beta- galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells. Cancer Res 60: 2584–2588.

    CAS  PubMed  Google Scholar 

  • Gu M, Wang W, Song WK, Cooper DN, Kaufman SJ . (1994). Selective modulation of the interaction of alpha 7 beta 1 integrin with fibronectin and laminin by L-14 lectin during skeletal muscle differentiation. J Cell Sci 107: 175–181.

    CAS  PubMed  Google Scholar 

  • He J, Baum LG . (2006). Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab Invest 86: 578–590.

    Article  CAS  Google Scholar 

  • Hong TM, Chen YL, Wu YY, Yuan A, Chao YC, Chung YC et al. (2007). Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin Cancer Res 13: 4759–4768.

    Article  CAS  Google Scholar 

  • Hu B, Guo P, Bar-Joseph I, Imanishi Y, Jarzynka MJ, Bogler O et al. (2007). Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene 26: 5577–5586.

    Article  CAS  Google Scholar 

  • Jung EJ, Moon HG, Cho BI, Jeong CY, Joo YT, Lee YJ et al. (2007). Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer. Int J Cancer 120: 2331–2338.

    Article  CAS  Google Scholar 

  • Kadri T, Lataillade JJ, Doucet C, Marie A, Ernou I, Bourin P et al. (2005). Proteomic study of Galectin-1 expression in human mesenchymal stem cells. Stem Cells Dev 14: 204–212.

    Article  CAS  Google Scholar 

  • Konigsberg W, Kirchhofer D, Riederer MA, Nemerson Y . (2001). The TF:VIIa complex: clinical significance, structure-function relationships and its role in signaling and metastasis. Thromb Haemost 86: 757–771.

    Article  CAS  Google Scholar 

  • Murga M, Fernandez-Capetillo O, Tosato G . (2005). Neuropilin-1 regulates attachment in human endothelial cells independently of vascular endothelial growth factor receptor-2. Blood 105: 1992–1999.

    Article  CAS  Google Scholar 

  • Neufeld G, Cohen T, Shraga N, Lange T, Kessler O, Herzog Y . (2002). The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med 12: 13–19.

    Article  CAS  Google Scholar 

  • Ozeki Y, Matsui T, Yamamoto Y, Funahashi M, Hamako J, Titani K . (1995). Tissue fibronectin is an endogenous ligand for galectin-1. Glycobiology 5: 255–261.

    Article  CAS  Google Scholar 

  • Parsons-Wingerter P, Kasman IM, Norberg S, Magnussen A, Zanivan S, Rissone A et al. (2005). Uniform overexpression and rapid accessibility of alpha5beta1 integrin on blood vessels in tumors. Am J Pathol 167: 193–211.

    Article  CAS  Google Scholar 

  • Rabinovich GA . (2005). Galectin-1 as a potential cancer target. Br J Cancer 92: 1188–1192.

    Article  CAS  Google Scholar 

  • Rorive S, Belot N, Decaestecker C, Lefranc F, Gordower L, Micik S et al. (2001). Galectin-1 is highly expressed in human gliomas with relevance for modulation of invasion of tumor astrocytes into the brain parenchyma. Glia 33: 241–255.

    Article  CAS  Google Scholar 

  • Shintani Y, Takashima S, Asano Y, Kato H, Liao Y, Yamazaki S et al. (2006). Glycosaminoglycan modification of neuropilin-1 modulates VEGFR2 signaling. EMBO J 25: 3045–3055.

    Article  CAS  Google Scholar 

  • Thijssen VL, Postel R, Brandwijk RJ, Dings RP, Nesmelova I, Satijn S . (2006). Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci USA 103: 15975–15980.

    Article  CAS  Google Scholar 

  • Toscano MA, Bianco GA, Ilarregui JM, Croci DO, Correale J, Hernandez JD et al. (2007). Differential glycosylation of T(H)1, T(H)2 and T(H)-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 8: 825–834.

    Article  CAS  Google Scholar 

  • Vaisman N, Gospodarowicz D, Neufeld G . (1990). Characterization of the receptors for vascular endothelial growth factor. J Biol Chem 265: 19461–19466.

    CAS  PubMed  Google Scholar 

  • Valenzuela HF, Pace KE, Cabrera PV, White R, Porvari K, Kaija H et al. (2007). O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1. Cancer Res 67: 6155–6162.

    Article  CAS  Google Scholar 

  • van den Brule FA, Waltregny D, Castronovo V . (2001). Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients. J Pathol 193: 80–87.

    Article  CAS  Google Scholar 

  • Zhou Q, Cummings RD . (1993). L-14 lectin recognition of laminin and its promotion of in vitro cell adhesion. Arch Biochem Biophys 300: 6–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants NSC-96-2311-B-006-005-MY3 and NSC-95-2314-B-002-119-MY3 from the National Science Council, DOH-TD-B-111-004 from the Department of Health, CMFHR9405 and CMFHR9542 from the Chi-Mei Medical Center, by funds from a Taiwan Government program promoting academic excellence and the development of world-class research centers, and the Landmark Project of National Cheng Kung University, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T M Hong or Y L Chen.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, S., Ying, N., Wu, M. et al. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 27, 3746–3753 (2008). https://doi.org/10.1038/sj.onc.1211029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211029

  • Springer Nature Limited

Keywords

This article is cited by

Navigation