Skip to main content
Log in

Heterostructures coupling ultrathin metal carbides and chalcogenides

  • Review Article
  • Published:

From Nature Materials

View current issue Submit your manuscript

Abstract

Non-layered transition metal carbides (TMCs) and layered transition metal dichalcogenides (TMDs) are two well-studied material families that have individually received considerable attention over the past century. In recent years, with the shift towards two-dimensional materials and heterostructures, a field has emerged that is focused on the structure and properties of TMC/TMD heterostructures, which through chemical conversion exhibit diverse types of heterostructure configuration that host coupled 2D–3D interfaces, giving rise to exotic properties. In this Review, we highlight experimental and computational efforts to understand the routes to fabricate TMC/TMD heterostructures. Furthermore, we showcase how controlling these heterostructures can lead to emergent electronic transport, optical properties and improved catalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Woodworking for TMC/TMD heterostructures.
Fig. 2: Timeline of the synthesis of TMCs, TMDs and TMD/TMC heterostructures.
Fig. 3: Emergent properties of TMC/TMD heterostructures.
Fig. 4: Highlights of UThTMC and TMC/TMD heterostructures realized from group IV, V and VI transition metals.

Similar content being viewed by others

References

  1. Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Bae, S. H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Shan, G., Ding, Z. & Gogotsi, Y. Two-dimensional MXenes and their applications. Front. Phys. 18, 13604 (2023).

    Article  Google Scholar 

  5. Hwu, H. H. & Chen, J. G. Surface chemistry of transition metal carbides. Chem. Rev. 105, 185–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, C. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, C. et al. Transport properties of topological semimetal tungsten carbide in the 2D limit. Adv. Electron. Mater. 5, 1800839 (2019).

    Google Scholar 

  8. Zhang, C. et al. Growth of self-aligned single-crystal vanadium carbide nanosheets with a controllable thickness on a unique staked metal substrate. Appl. Surf. Sci. 499, 143998 (2020).

    Article  CAS  Google Scholar 

  9. Hao, M. et al. Transport through a network of two-dimensional NbC superconducting crystals connected via weak links. Phys. Rev. B 101, 115422 (2020).

    Article  CAS  Google Scholar 

  10. Wang, Z. et al. Metal immiscibility route to synthesis of ultrathin carbides, borides, and nitrides. Adv. Mater. 29, 1700364 (2017).

    Article  Google Scholar 

  11. Suryaprakash Rao, P. & Prasad, P. M. Direct synthesis of Mo2C by molybdenite-CO reaction in the presence of lime. Mater. Trans. 34, 1229–1233 (1993).

    Article  Google Scholar 

  12. Suryaprakash Rao, P., Mankhand, T. R. & Prasad, P. M. Kinetics of formation of molybdenum carbide (Mo2C) by reaction between carbon monoxide and molybdenite or molybdenum. Mater. Trans. JIM 37, 239–244 (1996).

    Article  Google Scholar 

  13. Hara, Y., Minami, N. & Itagaki, H. Synthesis and characterization of high-surface area tungsten carbides and application to electrocatalytic hydrogen oxidation. Appl. Catal. A 323, 86–93 (2007).

    Article  CAS  Google Scholar 

  14. Chang, H.-Q., Zhang, G.-H. & Chou, K.-C. Topochemical synthesis of two-dimensional molybdenum carbide (Mo2C) via Na2CO3-assisted carbothermal reduction of 2H-MoS2. Mater. Chem. Phys. 244, 122713 (2020).

    Article  CAS  Google Scholar 

  15. Rothschild, A. et al. Encapsulation of WC within 2H-WS2 inorganic fullerene-like cages. Chem. Commun. 2, 363–364 (1999).

    Article  Google Scholar 

  16. Xiao, Y. et al. Building MoSe2-Mo2C incorporated hollow fluorinated carbon fibers for Li-S batteries. Composites B 193, 108004 (2020).

    Article  CAS  Google Scholar 

  17. Tang, C. et al. Sulfur-decorated molybdenum carbide catalysts for enhanced hydrogen evolution. ACS Catal. 5, 6956–6963 (2015).

    Article  CAS  Google Scholar 

  18. Zhang, K. et al. MoS2 nanosheet/Mo2C-embedded N-doped carbon nanotubes: synthesis and electrocatalytic hydrogen evolution performance. J. Mater. Chem. A 2, 18715–18719 (2014).

    Article  CAS  Google Scholar 

  19. Shao, M. et al. Carbonized MoS2: super-active co-catalyst for highly efficient water splitting on CdS. ACS Sustain Chem. Eng. 7, 4220–4229 (2019).

    Article  CAS  Google Scholar 

  20. Nguyen, T. P. et al. Strategy for controlling the morphology and work function of W2C/WS2 nanoflowers. J. Alloy. Compd 829, 154582 (2020).

    Article  CAS  Google Scholar 

  21. Nguyen, T. P. et al. Facile synthesis of W2C@WS2 alloy nanoflowers and their hydrogen generation performance. Appl. Surf. Sci. 504, 144389 (2020).

    Article  CAS  Google Scholar 

  22. Nguyen, T. P. & Kim, I. T. W2C/WS2 alloy nanoflowers as anode materials for lithium-ion storage. Nanomaterials 10, 1336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, F. et al. Superconductivity enhancement in phase-engineered molybdenum carbide/disulfide vertical heterostructures. Proc. Natl Acad. Sci. USA 117, 19685–19693 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, J. et al. Growth of molybdenum carbide–graphene hybrids from molybdenum disulfide atomic layer template. Adv. Mater. Interf. 4, 4–9 (2017).

    Article  Google Scholar 

  25. Hussain, S. et al. MoS2@X2C (X = Mo or W) hybrids for enhanced supercapacitor and hydrogen evolution performances. Chem. Eng. J. 421, 127843 (2021).

    Article  CAS  Google Scholar 

  26. Mathialagan, S. & Priya, P. G. Mo2C–MoS2 embedded reduced graphene oxide nanohybrid: epitaxial synthesis of Mo2C to augment the lithium storage properties of MoS2. Carbon 158, 756–765 (2020).

    Article  CAS  Google Scholar 

  27. Li, X. et al. In situ synthesis of carbon nanotube hybrids with alternate MoC and MoS2 to enhance the electrochemical activities of MoS2. Nano Lett. 15, 5268–5272 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Hsu, W. K. et al. WxMoyCzS2 nanotubes. Carbon 39, 1103–1116 (2001).

    Article  Google Scholar 

  29. Yang, S. et al. Unique three-dimensional Mo2C@MoS2 heterojunction nanostructure with S vacancies as outstanding all-pH range electrocatalyst for hydrogen evolution. J. Catal. 371, 20–26 (2019).

    Article  CAS  Google Scholar 

  30. Lin, J. F. et al. Synthesis of tungsten carbide and tungsten disulfide on vertically aligned multi-walled carbon nanotube forests and their application as non-Pt electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 14609–14616 (2015).

    Article  CAS  Google Scholar 

  31. Wiesel, I., Popovitz-Biro, R. & Tenne, R. Encapsulation of Mo2C in MoS2 inorganic fullerene-like nanoparticles and nanotubes. Nanoscale 5, 1499–1502 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Jia, L. et al. Structure design of MoS2@Mo2C on nitrogen-doped carbon for enhanced alkaline hydrogen evolution reaction. J. Mater. Sci. 55, 16197–16210 (2020).

    Article  CAS  Google Scholar 

  33. Zhao, Z. et al. Vertically aligned MoS2/Mo2C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution. ACS Catal. 7, 7312–7318 (2017).

    Article  CAS  Google Scholar 

  34. Wang, F. et al. Interface engineered WxC@WS2 nanostructure for enhanced hydrogen evolution catalysis. Adv. Funct. Mater. 27, 1–7 (2017).

    Google Scholar 

  35. Jeon, J. et al. Epitaxial synthesis of molybdenum carbide and formation of a Mo2C/MoS2 hybrid structure via chemical conversion of molybdenum disulfide. ACS Nano 12, 338–346 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Choi, S. et al. Scalable two-dimensional lateral metal/semiconductor junction fabricated with selective synthetic integration of transition-metal-carbide (Mo2C)/-dichalcogenide (MoS2). ACS Appl. Mater. Interf. 11, 47190–47196 (2019).

    Article  CAS  Google Scholar 

  37. Tiwari, A. P. et al. Lattice strain formation through spin-coupled shells of MoS2 on Mo2C for bifunctional oxygen reduction and oxygen evolution reaction electrocatalysts. Adv. Mater. Interfaces 6, 1900948 (2019).

    Article  CAS  Google Scholar 

  38. Meng, L., Sun, Q., Wang, J. & Ding, F. Molecular dynamics simulation of chemical vapor deposition graphene growth on Ni(111) surface. J. Phys. Chem. C. 116, 6097–6102 (2012).

    Article  CAS  Google Scholar 

  39. Xu, Z. et al. Molecular dynamics simulation of graphene sinking during chemical vapor deposition growth on semi-molten Cu substrate. npj Comput. Mater. 6, 14 (2020).

    Article  CAS  Google Scholar 

  40. Shibuta, Y. et al. Ab initio molecular dynamics simulation of dissociation of methane on nickel(111) surface: unravelling initial stage of graphene growth via a CVD technique. Chem. Phys. Lett. 565, 92–97 (2013).

    Article  CAS  Google Scholar 

  41. Nayir, N. et al. Atomic-scale probing of defect-assisted Ga intercalation through graphene using ReaxFF molecular dynamics simulations. Carbon 190, 276–290 (2022).

    Article  CAS  Google Scholar 

  42. Van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

    Article  Google Scholar 

  43. Han, Y. et al. Development, applications and challenges of ReaxFF reactive force field in molecular simulations. Front. Chem. Sci. Eng. 10, 16–38 (2016).

    Article  CAS  Google Scholar 

  44. van Duin, A. C. T. et al. Modeling for structural engineering and synthesis of two-dimensional WSe2 using a newly developed Reaxff reactive force field. J. Phys. Chem. C 124, 28285–28297 (2020).

    Article  Google Scholar 

  45. He, X., Zhu, Y., Epstein, A. & Mo, Y. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 4, 18 (2018).

    Article  Google Scholar 

  46. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Tong, Q. et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2017).

    Article  CAS  Google Scholar 

  49. Mattevi, C. & Sokolikova, M. S. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev. 49, 3952–3980 (2020).

    Article  PubMed  Google Scholar 

  50. Turker, F. et al. CVD synthesis and characterization of thin Mo2C crystals. J. Am. Ceram. Soc. 103, 5586–5593 (2020).

    Article  CAS  Google Scholar 

  51. Geng, D. C. et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mat. 29, 1700072 (2017).

    Article  Google Scholar 

  52. Hugosson, H. W. et al. Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide. J. Appl. Phys. 86, 3758–3767 (1999).

    Article  CAS  Google Scholar 

  53. Kurlov, A. S. & Gusev, A. I. Tungsten Carbides: Structure, Properties and Application in Hardmetals SSMaterials Vol. 184 (Springer, 2013).

  54. Liang, T., Phillpot, S. R. & Sinnott, S. B. Parametrization of a reactive many-body potential for Mo–S systems. Phys. Rev. B 79, 245110 (2009).

    Article  Google Scholar 

  55. Nayir, N. et al. Theoretical modeling of edge-controlled growth kinetics and structural engineering of 2D-MoSe2. Mater. Sci. Eng. B 271, 115263 (2021).

    Article  CAS  Google Scholar 

  56. Ostadhossein, A. et al. ReaxFF reactive force-field study of molybdenum disulfide (MoS2). J. Phys. Chem. Lett. 8, 631–640 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Nayir, N. et al. A ReaxFF force field for 2D-WS2 and its interaction with sapphire. J. Phys. Chem. C 125, 17950–17961 (2021).

    Article  CAS  Google Scholar 

  58. Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Unke, O. T. & Meuwly, M. PhysNet: a neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).

    Article  CAS  Google Scholar 

  61. Willens, R. H., Buehler, E. & Matthias, B. T. Superconductivity of the transition-metal carbides. Phys. Rev. 159, 327–330 (1967).

    Article  CAS  Google Scholar 

  62. Morton, N. et al. Superconductivity of molybdenum and tungsten carbides. J. Less Common Met. 25, 97–106 (1971).

    Article  CAS  Google Scholar 

  63. Matthias, B. T. & Hulm, J. K. A search for new superconducting compounds. Phys. Rev. 87, 799–806 (1952).

    Article  CAS  Google Scholar 

  64. Hardy, G. F. & Hulm, J. K. The superconductivity of some transition metal compounds. Phys. Rev. 93, 1004–1016 (1954).

    Article  CAS  Google Scholar 

  65. Zhang, Z. et al. Layer-stacking, defects, and robust superconductivity on the Mo-terminated surface of ultrathin Mo2C flakes grown by CVD. Nano Lett. 19, 3327–3335 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Gedeon, H. et al. Defect and interlayer coupling tuned quasiparticle scattering in 2D disordered Mo2C superconducting microcrystals. J. Phys. D 53, 434002 (2020).

    Article  CAS  Google Scholar 

  67. Liu, Z. et al. Phase transition and in situ construction of lateral heterostructure of 2D superconducting α/β Mo2C with sharp interface by electron beam irradiation. Nanoscale 9, 7501–7507 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Fan, Y. et al. Distinct superconducting properties and hydrostatic pressure effects in 2D α- and β-Mo2C crystal sheets. NPG Asia Mater. 12, 60 (2020).

    Article  CAS  Google Scholar 

  69. Zhang, J. et al. Superconductivity and high-pressure performance of 2D Mo2C crystals. J. Phys. Chem. Lett. 12, 2219–2225 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Huang, A. et al. Multiple topological electronic phases in superconductor MoC. Phys. Rev. Mater. 2, 54205 (2018).

    Article  CAS  Google Scholar 

  71. Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. De La Barrera, S. C. et al. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 9, 1427 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lu, J. et al. Full superconducting dome of strong Ising protection in gated monolayer WS2. Proc. Natl Acad. Sci. USA 115, 3551–3556 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Frolov, S. M., Manfra, M. J. & Sau, J. D. Topological superconductivity in hybrid devices. Nat. Phys. 16, 718–724 (2020).

    Article  CAS  Google Scholar 

  75. Das, S., Schulman, D. S. & Arnold, A. J. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018).

    Article  PubMed  Google Scholar 

  76. Fujii, R., Gotoh, Y., Liao, M. Y., Tsuji, H. & Ishikawa, J. Work function measurement of transition metal nitride and carbide thin films. Vacuum 80, 832–835 (2006).

    Article  CAS  Google Scholar 

  77. Jeon, J. et al. Transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection. Adv. Funct. Mater. 29, 1905384 (2019).

    Article  CAS  Google Scholar 

  78. Liu, Y., Kelly, T. G., Chen, J. G. & Mustain, W. E. Metal carbides as alternative electrocatalyst supports. ACS Catal. 3, 1184–1194 (2013).

    Article  CAS  Google Scholar 

  79. Weigert, E. C., Esposito, D. V. & Chen, J. G. Cyclic voltammetry and X-ray photoelectron spectroscopy studies of electrochemical stability of clean and Pt-modified tungsten and molybdenum carbide (WC and Mo2C) electrocatalysts. J. Power Sources 193, 501–506 (2009).

    Article  CAS  Google Scholar 

  80. Wirth, S., Harnisch, F., Weinmann, M. & Schröder, U. Comparative study of IVB–VIB transition metal compound electrocatalysts for the hydrogen evolution reaction. Appl. Catal. B 126, 225–230 (2012).

    Article  CAS  Google Scholar 

  81. Kimmel, Y. C., Xu, X., Yu, W., Yang, X. & Chen, J. G. Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts. ACS Catal. 4, 1558–1562 (2014).

    Article  CAS  Google Scholar 

  82. Li, J. et al. High-performance hydrogen evolution at a MoSe2-Mo2C seamless heterojunction enabled by efficient charge transfer. J. Mater. Chem. A 8, 6692–6698 (2020).

    Article  CAS  Google Scholar 

  83. Zhang, F. et al. Carbon doping of WS2 monolayers: bandgap reduction and p-type doping transport. Sci. Adv. 5, eaav5003 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu, J., Huang, Y., Ye, W. & Li, Y. CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 4, 1700194 (2017).

    Article  Google Scholar 

  85. Zhang, Q., Pastor-Pérez, L., Gu, S. & Reina, T. R. Transition metal carbides (TMCS) catalysts for gas phase CO2 upgrading reactions: a comprehensive overview. Catalysts 10, 955 (2020).

    Article  CAS  Google Scholar 

  86. Führer, M., Van Haasterecht, T. & Bitter, J. H. Molybdenum and tungsten carbides can shine too. Catal. Sci. Technol. 10, 6089–6097 (2020).

    Article  Google Scholar 

  87. Cao, J. et al. Realization of 2D crystalline metal nitrides via selective atomic substitution. Sci. Adv. 6, eaax8784 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, T. et al. Epitaxial atomic substitution for MoS2-MoN heterostructure synthesis. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.2c16425 (2022).

  89. Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491–8494 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Gutiérrez, H. R. et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447–3454 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the Basic Office of Science of the Department of Energy under award number DE-SC0018025. Y.L. acknowledges partial support from the Shenzhen Basic Research Project (grant number JCYJ20220530142816037) and the Guangdong Provincial Natural Science Foundation of China (grant number 2022A1515110936). Crystal structures generated using CrystalMaker, CrystalMaker Software Ltd, Oxford, England (www.crystalmaker.com).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susan B. Sinnott or Mauricio Terrones.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Babak Anasori and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sredenschek, A.J., Sanchez, D.E., Wang, J. et al. Heterostructures coupling ultrathin metal carbides and chalcogenides. Nat. Mater. 23, 460–469 (2024). https://doi.org/10.1038/s41563-024-01827-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01827-x

  • Springer Nature Limited

Navigation