Skip to main content
Log in

ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin

  • Article
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

Abstract

Current theories of muscle cross-bridge function suggest that force is generated by a change in the orientation of the myosin neck region. We attached a paramagnetic probe to a subunit in the neck region and measured the orientation of the probe using electron paramagnetic resonance spectroscopy. The angle of the probes on smooth myosin S1 were changed by 20°±4° on addition of ADP (50% effect at 5±2 μM), but ADP produced little effect on skeletal S1. The orientation of smooth myosin, +ADP, resembled that of skeletal myosin, ±ADP, suggesting that the release of ADP generates an extra rotation of the neck region in smooth muscle at the end of its power stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooke, R. The mechanism of muscle contraction. Critical Reviews in Biochemistry 21, 53–118 (1996).

    Google Scholar 

  2. Goldman, Y.E. Kinetics of the actomyosin ATPase in muscle fibers. Ann. Rev. Physiol. 49, 637–654 (1987).

    Article  CAS  Google Scholar 

  3. Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F. & Holmes, K.C. Atomic structure of the actin DNase complex. Nature 347, 37–44 (1990).

    Article  CAS  Google Scholar 

  4. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: A molecular motor. Science 261, 50–57 (1993).

    Article  CAS  Google Scholar 

  5. Lorenz, M., Popp, D. & Holmes, K.C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234, 826–836 (1993).

    Article  CAS  Google Scholar 

  6. Holmes, K.C., Popp, D., Gebhardt, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44–49 (1990).

    Article  CAS  Google Scholar 

  7. Schroder, R.R. et al. Three dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature 364, 171–174 (1993).

    Article  CAS  Google Scholar 

  8. Rayment, I. et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993).

    Article  CAS  Google Scholar 

  9. Cooke, R., Crowder, M.S. & Thomas, D.D. Orientation of spin labels attached to cross-bridges in contracting muscle fibers. Nature 30, 776–778 (1982).

    Article  Google Scholar 

  10. Tanner, J.W., Thomas, D.W. & Goldman, Y.E. Transients in orientation of a fluorescent cross-bridge probe following photolysis of caged nucleotides in skeletal muscle fibers. J. Mol. Biol. 223, 185–203 (1992).

    Article  CAS  Google Scholar 

  11. Roopnarine, O. & Thomas, D.D. Orientational dynamics of indane dione spin-labeled myosin heads in relaxed and contracting skeletal muscle fibers. Biophys. J. 68, 1461–1471 (1995).

    Article  CAS  Google Scholar 

  12. Yanagida, T. Angle of active site of myosin heads in contracting muscle during sudden length changes. J. Mus. Res. Cell Motility 6, 43–52 (1985).

    Article  CAS  Google Scholar 

  13. Zhao, L., Pate, E., Baker, A.J. & Cooke, R. The myosin catalytic domain does not rotate during the working power stroke. Biophys. J. 69, 994–999 (1995).

    Article  CAS  Google Scholar 

  14. Trybus, K.M. Regulation of expressed truncated smooth muscle myosins.Role of the essential light chain and tail length. J. Biol. Chem. 269, 20819–20822 (1994).

    CAS  PubMed  Google Scholar 

  15. Lowey, S., Waller, G.S. & Trybus, K.M. Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Nature 365, 454–456 (1993).

    Article  CAS  Google Scholar 

  16. Whittaker, M. et al. A 35-angstrom movement of smooth muscle myosin on ADP release. Nature 378, 748–751 (1995).

    Article  CAS  Google Scholar 

  17. Uyeda, T.Q.P., Abramson, P.O. & Spudich, J.A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc. Natl. Acad. Sci. USA 93, 4459–4464 (1996).

    Article  CAS  Google Scholar 

  18. Irving, M. et al. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature 375, 688–691 (1995).

    Article  CAS  Google Scholar 

  19. Jontes, J.D., Wilson-Kubalek, E.M. & Milligan, R.A. A 32-degrees tail swing in brush border myosin I on Adp release. Nature 378, 751–753 (1995).

    Article  CAS  Google Scholar 

  20. Thomas, D.D. Spectroscopic probes of muscle cross-bridge rotation. Annu. Rev. Physiol. 46, 691–709 (1987).

    Article  Google Scholar 

  21. Thomas, D.D. & Cooke, R. Orientation of spin-labeled myosin heads in glycerinated muscle fibers. Biophys. J. 32, 891–906 (1980).

    Article  CAS  Google Scholar 

  22. Barnett, V.A., Fajer, P., Polnaszek, C.F. & Thomas, D.D. High-resolution detection of muscle crossbridge orientation by electron paramagnetic resonance. Biophys. J. 49, 144–146 (1986).

    Article  CAS  Google Scholar 

  23. Ling, N., Shrimpton, C., Sleep, J., Kendrick-Jones, J. & Irving, M. Fluorescent probes of the orientation of myosin regulatory tight chains in relaxed, rigor, and contracting muscle. Biophys. J. 70, 1836–1846 (1996).

    Article  CAS  Google Scholar 

  24. Clark, J.F., Kemp, G.J. & Radda, G.K. The creatine kinase equilibrium, free [Adp] and myosin atpase in vascular smooth muscle cross-bridges. J. Theoretical Biol. 173, 207–211 (1995).

    Article  CAS  Google Scholar 

  25. Nishiye, E., Somlyo, A.V., Torok, K. & Somlyo, A.P. The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle. J. Physiol. 460, 247–71 (1993).

    Article  CAS  Google Scholar 

  26. Fuglsang, A., Khromov, A., Torok, K., Somlyo, A.V. & Somlyo, A.P. Flash photolysis studies of relaxation and cross-bridge detachment: higher sensitivity of tonic than phasic smooth muscle to MgADP. J. Musc. Res. Cell Motility 14, 666–677 (1993).

    Article  CAS  Google Scholar 

  27. Greene, L.E. & Sellers, J.R. Effect of phosphorylation on the binding of smooth mscle heavy meromyosin X ADP to actin. J. Biol. Chem. 262, 4177–4181 (1987).

    CAS  PubMed  Google Scholar 

  28. Griffith, O.H. & Jost, P.C. In Spin Labeling: Theory and Applications (ed. Berliner, U.) 454–519 (Academic Press: New York, 1976).

    Google Scholar 

  29. Geeves, M.A. The dynamics of actin and myosin association and the crossbridge model of muscle contraction. Biochem. J. 274 1–14 (1991).

    Article  CAS  Google Scholar 

  30. Allen, T.S., Ling, N., Irving, M. & Goldman, Y.E. Orientation changes in myosin regulatory light chains following photorelease of atp in skinned musclefibers. Biophys. J. 70, 1847–1862 (1996).

    Article  CAS  Google Scholar 

  31. Hambly, B., Franks, K. & Cooke, R. Paramagnetic probes attached to a light chain on the myosin head are highly disordered in active muscle fibers. Biophys. J. 63, 306–313 (1992).

    Article  Google Scholar 

  32. Ikebe, M. & Hartshorne, D.J. Effects of Ca2+ on the conformation and enzymatic activity of smooth muscle myosin. J. Biol. Chem. 260, 13146–13153 (1985).

    CAS  PubMed  Google Scholar 

  33. Facemyer, K.C. & Cremo, C.R. A new method to specifically label thiophosphorylatable proteins with extrinsic probes. Labeling of serine-19 of the regulatory light chain of smooth muscle myosin. Bioconjugate Chem. 3, 408–413 (1992).

    Article  CAS  Google Scholar 

  34. Cremo, C.R., Sellers, J.R. & Facemyer, K.C. Two heads are required for phosphorylation-dependent regulation of smooth muscle myosin. J. Biol. Chem. 270, 2171–2175 (1995).

    Article  CAS  Google Scholar 

  35. Ikebe, M. & Hartshorne, D.J. Proteolysis of smooth muscle myosin by Staphylococcus aureus protease: preparation of heavy meromyosin and subfragment 1 with intact 20 000-dalton light chains. Biochemistry 24, 2380–2387 (1985).

    Article  CAS  Google Scholar 

  36. Cooke, R. A new method for producing myosin subfragment-1. Biochem. Biophys. Res. Commun. 49, 1021–1028 (1972).

    Article  CAS  Google Scholar 

  37. Morita, J.-I., Takashi, R. & Ikebe, M. Exchange of the fluorescence-labeled 20,000-Dalton light chain of smooth muscle myosin. Biochemistry, 30 9539–9545 (1991).

    Article  CAS  Google Scholar 

  38. Trybus, K.M. & Chatman, T.A. Chimeric regulatory light chains as probes of smooth muscle myosin. J. Biol. Chem. 268, 4412–4419 (1993).

    CAS  PubMed  Google Scholar 

  39. Goldman, S.A., Bruno, G.V. & Freed, J.H. Estimating slow-motional rotational correlation times for nitroxides by electron spin resonance. J. Phys. Chem. 76, 1858–1860 (1972).

    Article  CAS  Google Scholar 

  40. Fajer, P.G., Bennett, R.L.H., Polnaszek, C.F., Fajer, E.A. & Thomas, D.D. General method for multiparameter fitting of high-resolution EPR spectra using a simplex algorithm. J. Mag. Res. 88, 111–125 (1990).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gollub, J., Cremo, C. & Cooke, R. ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin. Nat Struct Mol Biol 3, 796–802 (1996). https://doi.org/10.1038/nsb0996-796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0996-796

  • Springer Nature America, Inc.

This article is cited by

Navigation