Skip to main content
Log in

A genome-scale shRNA resource for transgenic RNAi in Drosophila

  • Brief Communication
  • Published:

From Nature Methods

View current issue Submit your manuscript

Abstract

Existing transgenic RNAi resources in Drosophila melanogaster based on long double-stranded hairpin RNAs are powerful tools for functional studies, but they are ineffective in gene knockdown during oogenesis, an important model system for the study of many biological questions. We show that shRNAs, modeled on an endogenous microRNA, are extremely effective at silencing gene expression during oogenesis. We also describe our progress toward building a genome-wide shRNA resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Design of shRNA constructs and phenotypes of shRNA-mediated gene silencing.
Figure 2: Analysis of the piRNA pathway during oogenesis.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Perrimon, N., Ni, J.Q. & Perkins, L. Cold Spring Harb. Perspect. Biol. 2, a003640 (2010).

    Article  Google Scholar 

  2. Czech, B. & Hannon, G.J. Nat. Rev. Genet. 12, 19–31 (2011).

    Article  CAS  Google Scholar 

  3. Haley, B., Hendrix, D., Trang, V. & Levine, M. Dev. Biol. 321, 482–490 (2008).

    Article  CAS  Google Scholar 

  4. Chen, C.H. et al. Science 316, 597–600 (2007).

    Article  CAS  Google Scholar 

  5. Ni, J.Q. et al. Genetics 182, 1089–1100 (2009).

    Article  CAS  Google Scholar 

  6. Petrella, L.N., Smith-Leiker, T. & Cooley, L. Development 134, 703–712 (2007).

    Article  CAS  Google Scholar 

  7. Rorth, P. Mech. Dev. 78, 113–118 (1998).

    Article  CAS  Google Scholar 

  8. Malone, C.D. & Hannon, G.J. Cold Spring Harb. Symp. Quant. Biol. 74, 225–234 (2009).

    Article  CAS  Google Scholar 

  9. Kulkarni, M.M. et al. Nat. Methods 3, 833–838 (2006).

    Article  CAS  Google Scholar 

  10. Birmingham, A. et al. Nat. Methods 3, 199–204 (2006).

    Article  CAS  Google Scholar 

  11. Dietzl, G. et al. Nature 448, 151–156 (2007).

    Article  CAS  Google Scholar 

  12. Vert, J.P., Foveau, N., Lajaunie, C. & Vandenbrouck, Y. BMC Bioinformatics 7, 520 (2006).

    Article  Google Scholar 

  13. Cleary, M.A. et al. Nat. Methods 1, 241–248 (2004).

    Article  CAS  Google Scholar 

  14. Erlich, Y. et al. Genome Res. 19, 1243–1253 (2009).

    Article  CAS  Google Scholar 

  15. Van Doren, M., Williamson, A.L. & Lehmann, R. Curr. Biol. 8, 243–246 (1998).

    Article  CAS  Google Scholar 

  16. Tracey, W.D. Jr. et al. Genetics 154, 273–284 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ni, J.Q. et al. Nat. Methods 5, 49–51 (2008).

    Article  CAS  Google Scholar 

  18. Perrimon, N., Engstrom, L. & Mahowald, A.P. Genetics 121, 333–352 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brennecke, J. et al. Cell 128, 1089–1103 (2007).

    Article  CAS  Google Scholar 

  20. Nishida, K.M. et al. EMBO J. 28, 3820–3831 (2009).

    Article  CAS  Google Scholar 

  21. Cook, H.A., Koppetsch, B.S., Wu, J. & Theurkauf, W.E. Cell 116, 817–829 (2004).

    Article  CAS  Google Scholar 

  22. Vagin, V.V. et al. Science 313, 320–324 (2006).

    Article  CAS  Google Scholar 

  23. Czech, B. et al. Nature 453, 798–802 (2008).

    Article  CAS  Google Scholar 

  24. Zhou, R. et al. RNA 15, 1886–1895 (2009).

    Article  CAS  Google Scholar 

  25. Livak, K.J. & Schmittgen, T.D. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

  26. Czech, B. et al. Mol. Cell 36, 445–456 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The design and construction of the first shRNAs were supported in part by the Janelia Farm Visitor Program. We thank G. Rubin, C. Zuker and T. Laverty for their interest and support; R. Hardy and C. Zuker for the data presented in Supplementary Table 2; B. Haley for helpful discussion on shRNAs; L. Cooley (Yale University) for the gift of the MTD-Gal4 line; and Z. Xuan for help with library design. S. Zusman and M. Tworoger of Genetic Services, Inc. generated the transgenic lines. R.Z. is supported by the Leukemia and Lymphoma Society. B.C. is supported by a PhD fellowship from the Boehringer Ingelheim Fonds. This work was supported by two US National Institute of General Medical Sciences R01 grants (GM067761 and GM084947) to N.P., an EU FP7 European Research Council starting grant to J.B. and contributions from the US National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Contributions

J.-Q.N., R.Z. and B.C. carried out major experiments; L.-P.L., L.H., D.Y.-Z., H.-S.S., R.B., M.B. and L.A.P. produced the TRiP lines; P.K. performed the luciferase experiments in ovaries; D.H. and J.B. analyzed the piRNA pathway during oogenesis; and G.J.H. and N.P. supervised the project. R.Z., B.C., J.-Q.N., D.H., J.B., G.J.H. and N.P. wrote the manuscript.

Corresponding author

Correspondence to Norbert Perrimon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–3 and Supplementary Notes 1–3 (PDF 1347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, JQ., Zhou, R., Czech, B. et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8, 405–407 (2011). https://doi.org/10.1038/nmeth.1592

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1592

  • Springer Nature America, Inc.

This article is cited by

Navigation