Skip to main content

Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR

  • Protocol
  • First Online:
Applications of Genome Modulation and Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2495))

Abstract

The last two decades have marked significant advancement in the genome editing field. Three generations of programmable nucleases (ZFNs, TALENs, and CRISPR-Cas system) have been adopted to introduce targeted DNA double-strand breaks (DSBs) in eukaryotic cells. DNA repair machinery of the cells has been exploited to introduce insertion and deletions (indels) at the targeted DSBs to study function of any gene-of-interest. The resulting indels were generally assumed to be “random” events produced by “error-prone” DNA repair pathways. However, recent advances in computational tools developed to study the Cas9-induced mutations have changed the consensus and implied the “non-randomness” nature of these mutations. Furthermore, CRISPR-centric tools are evolving at an unprecedented pace, for example, base- and prime-editors are the newest developments that have been added to the genome editing toolbox. Altogether, genome editing tools have revolutionized our way of conducting research in life sciences. Here, we present a concise overview of genome editing tools and describe the DNA repair pathways underlying the generation of genome editing outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160. https://doi.org/10.1073/pnas.93.3.1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klug A, Rhodes D (1987) Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb Symp Quant Biol 52:473–482. https://doi.org/10.1101/SQB.1987.052.01.054

    Article  CAS  PubMed  Google Scholar 

  3. Cassandri M, Smirnov A, Novelli F et al (2017) Zinc-finger proteins in health and disease. Cell Death Discov 3:1–2

    Article  Google Scholar 

  4. Doyon Y, Vo TD, Mendel MC et al (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79. https://doi.org/10.1038/nmeth.1539

    Article  CAS  PubMed  Google Scholar 

  5. Urnov FD, Miller JC, Lee YL et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651. https://doi.org/10.1038/nature03556

    Article  CAS  PubMed  Google Scholar 

  6. Ou L, DeKelver RC, Rohde M et al (2019) ZFN-mediated in vivo genome editing corrects murine hurler syndrome. Mol Ther 27:178–187. https://doi.org/10.1016/j.ymthe.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Haurigot V, Doyon Y et al (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221. https://doi.org/10.1038/nature10177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paschon DE, Lussier S, Wangzor T et al (2019) Diversifying the structure of zinc finger nucleases for high-precision genome editing. Nat Commun 10:1–2. https://doi.org/10.1038/s41467-019-08867-x

    Article  CAS  Google Scholar 

  9. Miller JC, Holmes MC, Wang J et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785. https://doi.org/10.1038/nbt1319

    Article  CAS  PubMed  Google Scholar 

  10. Dong JY, Fan PD, Frizzell RA (1996) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 7:2101–2112. https://doi.org/10.1089/hum.1996.7.17-2101

    Article  CAS  PubMed  Google Scholar 

  11. Miller JC, Patil DP, Xia DF et al (2019) Enhancing gene editing specificity by attenuating DNA cleavage kinetics. Nat Biotechnol 37:945–952. https://doi.org/10.1038/s41587-019-0186-z

    Article  CAS  PubMed  Google Scholar 

  12. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501. https://doi.org/10.1126/science.1178817

    Article  CAS  PubMed  Google Scholar 

  13. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512. https://doi.org/10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  14. Li T, Huang S, Jiang WZ et al (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372. https://doi.org/10.1093/nar/gkq704

    Article  CAS  PubMed  Google Scholar 

  15. Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82. https://doi.org/10.1093/nar/gkr218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:756–761. https://doi.org/10.1534/genetics.110.120717

    Article  CAS  Google Scholar 

  17. Schmid-Burgk JL, Schmidt T, Kaiser V et al (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 31:76–81. https://doi.org/10.1038/nbt.2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reyon D, Tsai SQ, Khgayter C et al (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465. https://doi.org/10.1038/nbt.2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mullard A (2020) Gene-editing pipeline takes off. Nat Rev Drug Discov 19:367–372

    Article  CAS  Google Scholar 

  20. Kim Y, Kweon J, Kim JS (2013) TALENs and ZFNs are associated with different mutation signatures. Nat Methods 10:185

    Article  Google Scholar 

  21. Taheri-Ghahfarokhi A, Taylor BJM, Nitsch R et al (2018) Decoding non-random mutational signatures at Cas9 targeted sites. Nucleic Acids Res 46:8417–8434. https://doi.org/10.1093/nar/gky653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346

    Google Scholar 

  25. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Park AI, Mou H et al (2015) A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol 16:1. https://doi.org/10.1186/s13059-015-0680-7

    Article  CAS  Google Scholar 

  27. Shen MW, Arbab M, Hsu JY et al (2018) Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563:646–651. https://doi.org/10.1038/s41586-018-0686-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838. https://doi.org/10.1038/nbt.2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim E, Kim S, Kim DH et al (2012) Precision genome engineering with programmable DNA-nicking enzymes. Genome Res 22:1327–1333. https://doi.org/10.1101/gr.138792.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dahlman JE, Abudayyeh OO, Joung J et al (2015) Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol 33:1159–1161. https://doi.org/10.1038/nbt.3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma H, Tu LC, Naseri A et al (2016) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34:528–530. https://doi.org/10.1038/nbt.3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lillestøl RK, Redder P, Garrett RA, Brügger K (2006) A putative viral defence mechanism in archaeal cells. Archaea 2:59–72. https://doi.org/10.1155/2006/542818

    Article  PubMed  PubMed Central  Google Scholar 

  33. Makarova KS, Grishin NV, Shabalina SA et al (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:1–26

    Article  Google Scholar 

  34. Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    Article  CAS  Google Scholar 

  35. Makarova KS, Wolf YI, Iranzo J et al (2020) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83

    Article  CAS  Google Scholar 

  36. Ran FA, Cong L, Yan WX et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191. https://doi.org/10.1038/nature14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hou Z, Zhang Y, Propson NE et al (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A 110:15644–15649. https://doi.org/10.1073/pnas.1313587110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harrington LB, Paez-Espino D, Staahl BT et al (2017) A thermostable Cas9 with increased lifetime in human plasma. Nat Commun 8:1–8. https://doi.org/10.1038/s41467-017-01408-4

    Article  CAS  Google Scholar 

  39. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gasiunas G, Young JK, Karvelis T et al (2020) A catalogue of biochemically diverse CRISPR-Cas9 orthologs. Nat Commun 11:1. https://doi.org/10.1038/s41467-020-19344-1

    Article  CAS  Google Scholar 

  41. Osakabe K, Wada N, Murakami E, Osakabe Y (2020) Genome editing in mammals using CRISPR type I-D nuclease. bioRxiv. https://doi.org/10.1101/2020.03.14.991976

  42. Pickar-Oliver A, Black JB, Lewis MM et al (2019) Targeted transcriptional modulation with type I CRISPR–Cas systems in human cells. Nat Biotechnol 37:1493–1501. https://doi.org/10.1038/s41587-019-0235-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morisaka H, Yoshimi K, Okuzaki Y et al (2019) CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun 10:1–3. https://doi.org/10.1038/s41467-019-13226-x

    Article  CAS  Google Scholar 

  44. Dolan AE, Hou Z, Xiao Y et al (2019) Introducing a Spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas. Mol Cell 74:936–950.e5. https://doi.org/10.1016/j.molcel.2019.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen Y, Liu J, Zhi S et al (2020) Repurposing type I–F CRISPR–Cas system as a transcriptional activation tool in human cells. Nat Commun 11:1–4. https://doi.org/10.1038/s41467-020-16880-8

    Article  CAS  Google Scholar 

  46. Pannunzio NR, Watanabe G, Lieber MR (2018) Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 293:10512–10523

    Article  CAS  Google Scholar 

  47. Scully R, Panday A, Elango R, Willis NA (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 20:698–714

    Article  CAS  Google Scholar 

  48. Zhao B, Rothenberg E, Ramsden DA, Lieber MR (2020) The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 21:765–781. https://doi.org/10.1038/s41580-020-00297-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yeh CD, Richardson CD, Corn JE (2019) Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 21:1468–1478

    Article  CAS  Google Scholar 

  50. van Overbeek M, Capurso D, Carter MM et al (2016) DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol Cell 63:633–646. https://doi.org/10.1016/j.molcel.2016.06.037

    Article  CAS  PubMed  Google Scholar 

  51. Chari R, Mali P, Moosburner M, Church GM (2015) Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods 12:823–826. https://doi.org/10.1038/nmeth.3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maresca M, Lin VG, Guo N, Yang Y (2013) Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res 23:539–546. https://doi.org/10.1101/gr.145441.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suzuki K, Tsunekawa Y, Hernandez-Benitez R et al (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–149. https://doi.org/10.1038/nature20565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hanlon KS, Kleinstiver BP, Garcia SP et al (2019) High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat Commun 10:1. https://doi.org/10.1038/s41467-019-12449-2

    Article  CAS  Google Scholar 

  55. Nelson CE, Wu Y, Gemberling MP et al (2019) Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med 25:427–432. https://doi.org/10.1038/s41591-019-0344-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Perrault R, Wang H, Wang M et al (2004) Backup pathways of NHEJ are suppressed by DNA-PK. J Cell Biochem 92:781–794. https://doi.org/10.1002/jcb.20104

    Article  CAS  PubMed  Google Scholar 

  57. Kabotyanski EB, Gomelsky L, Han JO et al (1998) Double-strand break repair in Ku86- and XRCC4-deficient cells. Nucleic Acids Res 26:5333–5342. https://doi.org/10.1093/nar/26.23.5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boulton SJ, Jackson SP (1996) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15:5093–5103. https://doi.org/10.1002/j.1460-2075.1996.tb00890.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Boboila C, Jankovic M, Yan CT et al (2010) Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc Natl Acad Sci U S A 107:3034–3039. https://doi.org/10.1073/pnas.0915067107

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-Strand break. Trends Cell Biol 26:52–64

    Article  CAS  Google Scholar 

  61. Khodaverdian VY, Hanscom T, Yu AM et al (2017) Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks. Nucleic Acids Res 45:12848–12861. https://doi.org/10.1093/nar/gkx1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Owens DDG, Caulder A, Frontera V et al (2019) Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic Acids Res 47:7402–7417. https://doi.org/10.1093/nar/gkz459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771. https://doi.org/10.1038/nbt.4192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang W-W, Matlashewski G (2019) Single-strand annealing plays a major role in double-strand DNA break repair following CRISPR-Cas9 cleavage in leishmania. mSphere 4:e00408–e00419. https://doi.org/10.1128/msphere.00408-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu M, Rehman S, Tang X et al (2019) Methodologies for improving HDR efficiency. Front Genet 9:691

    Article  Google Scholar 

  66. Sakuma T, Nakade S, Sakane Y et al (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11:118–133. https://doi.org/10.1038/nprot.2015.140

    Article  CAS  PubMed  Google Scholar 

  67. Bischoff N, Wimberger S, Maresca M, Brakebusch C (2020) Improving precise CRISPR genome editing by small molecules: is there a magic potion? Cell 9

    Google Scholar 

  68. Tsai SQ, Wyvekens N, Khayter C et al (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576. https://doi.org/10.1038/nbt.2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582. https://doi.org/10.1038/nbt.2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424. https://doi.org/10.1038/nature17946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of T to G C in genomic DNA without DNA cleavage. Nature 551:464–471. https://doi.org/10.1038/nature24644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Richter MF, Zhao KT, Eton E et al (2020) Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 38:883–891. https://doi.org/10.1038/s41587-020-0453-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sakata RC, Ishiguro S, Mori H et al (2020) Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol 38:865–869. https://doi.org/10.1038/s41587-020-0509-0

    Article  CAS  PubMed  Google Scholar 

  74. Hilton IB, D’Ippolito AM, Vockley CM et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517. https://doi.org/10.1038/nbt.3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Williams RM, Senanayake U, Artibani M et al (2018) Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo. Development 145:dev160333. https://doi.org/10.1242/dev.160333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vojta A, Dobrinic P, Tadic V et al (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44:5615–5628. https://doi.org/10.1093/nar/gkw159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu XS, Wu H, Ji X et al (2016) Editing DNA methylation in the mammalian genome. Cell 167:233–247.e17. https://doi.org/10.1016/j.cell.2016.08.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lei Y, Zhang X, Su J et al (2017) Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat Commun 8:1. https://doi.org/10.1038/ncomms16026

    Article  CAS  Google Scholar 

  79. Morita S, Noguchi H, Horii T et al (2016) Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol 34:1060–1065. https://doi.org/10.1038/nbt.3658

    Article  CAS  PubMed  Google Scholar 

  80. Xu X, Tao Y, Gao X et al (2016) A CRISPR-based approach for targeted DNA demethylation. Cell Discov 2:1–2. https://doi.org/10.1038/celldisc.2016.9

    Article  CAS  Google Scholar 

  81. Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157. https://doi.org/10.1038/s41586-019-1711-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bennett EP, Petersen BL, Johansen IE et al (2020) INDEL detection, the ‘Achilles heel’ of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels. Nucleic Acids Res 48:11958–11981. https://doi.org/10.1093/nar/gkaa975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Smits AH, Ziebell F, Joberty G et al (2019) Biological plasticity rescues target activity in CRISPR knock outs. Nat Methods 16:1087–1093. https://doi.org/10.1038/s41592-019-0614-5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shamshirgaran, Y., Liu, J., Sumer, H., Verma, P.J., Taheri-Ghahfarokhi, A. (2022). Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR. In: Verma, P.J., Sumer, H., Liu, J. (eds) Applications of Genome Modulation and Editing. Methods in Molecular Biology, vol 2495. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2301-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2301-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2300-8

  • Online ISBN: 978-1-0716-2301-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics