Skip to main content
Log in

Giant oxygen isotope shift in the magnetoresistive perovskite La1–xCaxMnO3+y

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

FERROMAGNETIC perovskites of the form La1–XMexMnO3–Y (where Me is Ca or Sr) have been known1 since 1950, but there has been a recent resurgence of interest following the discovery of giant magnetoresistance in this class of compounds2,3. The compounds contain both Mn3+ and Mn4+ ions; as the electronic ground state of the Mn3+ ions is degenerate, their energy is lowered by a spontaneous distortion of the surrounding lattice—the Jahn–Teller effect4. The charge carriers in these materials are strongly coupled to (and mediate the ferromagnetic interaction between) the manganese ions5, suggesting that localized lattice distortions could also play an important role in determining the electronic and magnetic properties of these compounds. Here we investigate this possibility by examining the effect on the ferromagnetic transition temperature of varying the oxygen isotope mass (replacing 16O with 18O). For La0.8Ca0.2MnO3+y, we measure an isotope shift of >20 K, significantly larger than that found for any magnetic or electronic phase transition in other oxides. In contrast, we observe no significant isotope shift for the structurally related ferromagnet SrRuO3, in which the Jahn–Teller effect is negligible. These results imply that the large isotope shift arises from coupling of the charge carriers to Jahn–Teller lattice distortions, and we suggest that such Jahn–Teller 'polarons' may also be responsible for the magnetoresistive properties of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, S. et al. Science 264, 413–415 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Jonker, G. H. & Van Santen, J. H. Physica 16, 337–349 (1950).

    Article  ADS  CAS  Google Scholar 

  3. Chahara, K. et al. Appl. Phys. Lett. 63, 1990–1992 (1993). (see note below)

    Article  ADS  CAS  Google Scholar 

  4. Jahn, H. A. & Teller, E. Proc. R. Soc. Lond. A 161, 220–235 (1937).

    ADS  CAS  Google Scholar 

  5. Anderson, P. W. & Hasegawa, H. Phys. Rev. 100, 675–681 (1955).

    Article  ADS  CAS  Google Scholar 

  6. Höck, K.-H., Nickisch, H. & Thomas, H. Helv. phys. Acta 50, 237–243 (1983).

    Google Scholar 

  7. Alexandrov, A. S. & Mott, N. F. Int. J. mod. Phys. B8, 2075–2109 (1994).

    Article  ADS  CAS  Google Scholar 

  8. De Jongh, L. J. Physica C152, 171–216 (1988).

    Article  CAS  Google Scholar 

  9. Millis, A. J., Littlewood, P. B. & Shraiman, B. I. Phys. Rev. Lett. 74, 5144–5147 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Shikano, M. et al. Solid St. Commun. 90, 115–119 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Zech, D. et al. Nature 371, 681–683 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Schiffer, P. et al. Phys. Rev. Lett. 75, 3336–3339 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Zhao, G. M. et al. Phys. Rev. B52, 6840–6844 (1995).

    Article  MathSciNet  CAS  Google Scholar 

  14. Shannon, R. D. Acta crystallogr. A32, 751–767 (1976).

    Article  Google Scholar 

  15. Hwang, H. Y. et al. Phys. Rev. Lett. 75, 914–917 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Goodenough, J. B. Phys. Rev. 106, 564–573 (1955).

    Article  ADS  Google Scholar 

  17. Röder, H., Zhang, J. & Bishop, A. R. Phys. Rev. Lett. 76, 1356–1359 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Gm., Conder, K., Keller, H. et al. Giant oxygen isotope shift in the magnetoresistive perovskite La1–xCaxMnO3+y. Nature 381, 676–678 (1996). https://doi.org/10.1038/381676a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381676a0

  • Springer Nature Limited

This article is cited by

Navigation