Skip to main content
Log in

Magnetic Structure and Magnetotransport Properties of La0.7Sr0.3Mn1 – xNi x O3

  • Electrical and Magnetic Properties
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

La0.7Sr0.3Mn1 – xNi x O3 (0.12 ≤ x ≤ 0.35) compositions have been studied using neutron diffraction, magnetometry, and measurements of magnetotransport properties. At temperatures of 5–300 K, these compounds were found to have a rhombohedral crystal structure. The substitution of nickel for manganese has been shown to result in a decrease in the Curie temperature from 278 K (х = 0.12) to 60 K (х = 0.3); in this case, the spontaneous magnetization of the compositions decreases to zero (x = 0.33). The magnetoresistive effect for the semimetals with 0.12 ≤ x < 0.18 increases near the Curie temperature, whereas the magnetoresistance of semiconducting compositions with х ≥ 0.2 progressively decreases as the temperature increases. For compositions with х ≥ 0.25, an antiferromagnetic G-type component has been found by neutron diffraction, the Neel temperature of which reaches 260 K (at х = 0.35). The study of the La1–ySr y Mn0.65Ni0.35O3 (y ≤ 0.3) system showed that the content of ferromagnetic component decreases with increasing Sr content. It has been inferred that the antiferromagnetism of the compositions with х > 0.25 is due to the strong negative exchange interactions Ni2+–О–Ni2+ and Mn4+–О–Mn4+ and the absence of ionic order. The obtained data have been used to construct the magnetic phase diagram of the La0.7Sr0.3Mn1–xNi x O3 (0.12 ≤ x ≤ 0.35) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zener, “Interaction between the d-shells in the transition metals: II. Ferromagnetic compounds of manganese with perovskite structure,” Phys. Rev. 82, 403–405 (1951).

    Article  Google Scholar 

  2. C. Sen, G. Alvarez, and E. Dagotto, “Competing ferromagnetic and charge-ordered states in models for manganites: The origin of the colossal magnetoresistance effect,” Phys. Rev. Lett. 98, 127202 (2007).

    Article  Google Scholar 

  3. J. -S. Zhou and J. B. Goodenough, “Paramagnetic phase in single-crystal LaMnO3,” Phys. Rev. B 60, R15002–R15004 (1999).

    Article  Google Scholar 

  4. E. O. Wollan and W. C. Koehler, “Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1–x)La, xCa]MnO3,” Phys. Rev. 100, 545–563 (1955).

    Article  Google Scholar 

  5. T. F. Creel, J. B. Yang, M. Kahveci, J. Lamsal, S. K. Malik, S. Quezado, B. W. Benapfl, H. Blackstead, O. A. Pringle, W. B. Yelon, and W. J. Jameset, “Structural and magnetic properties of La0.7Sr0.3Mn1–xNixO3 (x = 0.05, 0.1, 0.2, 0.3, 0.4),” MRS Proc. Vol. 1327 (Symposium G–Complex Oxide Materials for Emerging Energy Technologies) (2011). mrss11-1327-g08-0; doi 10.1557/opl.2011.852

    Google Scholar 

  6. Z. H. Wang, J. W. Cai, B. G. Shen, X. Chen, and W. S. Zhan, “Exchange interaction, spin cluster and transport behaviour in perovskites La0.67Sr0.33(Mn1–xNix)O3 (x = 0.2),” J. Phys.: Condens. Matter 12, 601–610 (2000).

    Google Scholar 

  7. J.-W. Feng and L.-P. Hwang, “Ferromagnetic cluster behaviors and magnetoresistance in Ni-Doped LaSrMnO3 Systems,” Appl. Phys. Lett. 75, 1592–1594 (1999).

    Article  Google Scholar 

  8. T. F. Creel, J. Yang, M. Kahveci, S. K. Malik, S. Quezado, O. A. Pringle1, W. B. Yelon, and W. J. James, “Structural and magnetic properties of La0.7Sr0.3Mn1–xNixO3 (x = 0.4),” J. Appl. Phys. 114, 013911 (2013).

    Article  Google Scholar 

  9. A. Wold, R. J. Arnott, and J. B. Goodenough, “Some magnetic and crystallographic properties of the system LaMn1–xNixO3 + λ,” J. Appl. Phys. 29, 387–389 (1958).

    Article  Google Scholar 

  10. Y. Guo, L. Shi, S. Zhou, J. Zhao, and W. Liu, “Near room-temperature magnetoresistance effect in double perovskite La2NiMnO6,” Appl. Phys. Lett. 102, 2224011 (2013).

    Google Scholar 

  11. Y. Guo, L. Shi, S. Zhou, J. Zhao, C. Wang, W. Liu, and S. Wei, “Tunable exchange bias effect in Sr-doped double perovskite La2NiMnO6,” J. Phys. D: Appl. Phys. 46, 175302 (2013).

    Article  Google Scholar 

  12. T. Roisnel and J. Rodriquez-Carvajal, “WinPLOTR: AWindows tool for powder diffraction pattern analysis,” Mater. Sci. Forum 378–381, 118–123 (2002).

    Google Scholar 

  13. J. Hejtmánek, Z. Jirák, O. Kaman, and S. Vratislav, “Tunneling magnetoresistance in nanogranular La1‒xSrxMnO3 (x ~ 0.5),” AIP Adv. 7, 055818 (2017).

    Article  Google Scholar 

  14. O. Toulemonde, F. Studer, A. Barnabe, A. Maignan, C. Martin, and B. Raveau, “Charge states of transition metal in “Cr, Co and Ni” doped Ln0.5Ca0.5MnO3 CMR manganites,” Eur. Phys. J. B 4, 159–167 (1998).

    Article  Google Scholar 

  15. O. Toulemonde, F. Studer, and B. Raveau, “Magnetic interactions studies of Co and Ni-doped manganites using soft XMCD,” Solid State Commun. 118, 107–112 (2001).

    Article  Google Scholar 

  16. J. S. Zhou, J. B. Goodenough, and B. Dabrowski, “Transition from Curie–Weiss to enhanced Pauli paramagnetism in RNiO3 (R = La, Pr, Gd),” Phys. Rev. B 67, 020404 (2003).

    Article  Google Scholar 

  17. J. B. Goodenough, “Theory of the Role Of Covalence In The Perovskite-Type Manganites [La, M(II)]MnO3,” Phys. Rev. 100, 564–573 (1955).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Troyanchuk.

Additional information

Original Russian Text © I.O. Troyanchuk, M.V. Bushinsky, N.V. Tereshko, V. Sikolenko, S. Schorr, 2018, published in Fizika Metallov i Metallovedenie, 2018, Vol. 119, No. 4, pp. 334–341.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troyanchuk, I.O., Bushinsky, M.V., Tereshko, N.V. et al. Magnetic Structure and Magnetotransport Properties of La0.7Sr0.3Mn1 – xNi x O3. Phys. Metals Metallogr. 119, 316–323 (2018). https://doi.org/10.1134/S0031918X18040166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18040166

Keywords

Navigation