Skip to main content
Log in

Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MID-ocean-ridge basalts (MORBs) are probably a mixture of liquids formed by near-fractional melting of upwelling mantle over a range of pressures1-3. Thus, an understanding of MORB genesis requires knowledge of the compositions of near-solidus melts of mantle peridotite, which have not been measured experimentally. Here we present the results of melting experiments on peridotite using a two-stage diamond-aggregate extraction technique, and the results of thermodynamic calculations of peridotite melting. Both the experiments and the calculations show that at 10 kbar, near-solidus melts (melt fraction F = 0.02-0.05) of fertile peridotite are enriched in SiO2, A12O3 and Na2O and depleted in FeO* (all iron as FeO), MgO and CaO relative to higher-degree melts. At F≈0.02, the partial melt has ~57 wt% SiO2 and is qualitatively similar to silica-rich melt inclusions found in spinel peridotites worldwide4,5. At low melt fractions (F≤0.08), measured and calculated clinopv roxene/ liquid (cpx/liq) partition coefficients for TiO2 are larger than those calculated from cpx-liq pairs in higher-melt-fraction experiments. This change in titanium partitioning just above the fertile peridotite solidus implies that other highly charged elements (such as Hf, Zr, Th and U) exhibit similarly complex behaviour during the initial stages of mantle melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahern, J. L. & Turcotte, D. L. Earth planet. Sci. Lett. 45, 115–122 (1979).

    Article  ADS  Google Scholar 

  2. McKenzie, D. P. J. Petrology 25, 713–765 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. J. geophys. Res. 95, 2661–2678 (1990).

    Article  ADS  Google Scholar 

  4. Draper, D. S. J. Geol. 100, 766–776 (1991).

    Article  ADS  Google Scholar 

  5. Schiano, P. & Clocchiatti, R. Nature 368, 621–624 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Baker, M. B. & Stolper, E. M. Geochim. cosmochim. Acta 58, 2811–2827 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Takahashi, E. & Kushiro, I. Am. Miner. 68, 859–879 (1983).

    CAS  Google Scholar 

  8. Bertka, C. M. & Holloway, J. R. Contr. Miner. Petrol. 115, 313–322 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Falloon, T. J. & Green, D. H. Miner. Petrol. 37, 181–219 (1987).

    Article  CAS  Google Scholar 

  10. Fujii, T. & Scarfe, C. Contr. Miner. Petrol. 90, 18–28 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Hirose, K. & Kushiro, I. Earth planet. Sci. Lett. 114, 477–489 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Jaques, A. L. & Green, D. H. Contr. Miner. Petrol. 73, 287–310 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Sen, G. Nature 299, 336–338 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Takahashi, E. J. geophys. Res. 91, 9367–9380 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Ghiorso, M. S. Geochim. cosmochim. Acta 58, 5489–5501 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Ghiorso, M. S. & Sack, R. O. Contr. Miner. Petrol. (in the press).

  17. Hirschmann, M. M., Stolper, E. M. & Ghiorso, M. S. Mineralog. Mag. 58A, 418–419 (1994).

    Article  ADS  Google Scholar 

  18. Kushiro, I. Am. J. Sci. 275, 411–431 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Ryerson, F. J. Geochim. cosmochim. Acta 49, 637–649 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Sack, R. O. & Ghiorso, M. S. Contr. Miner. Petrol. 118, 271–296 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Lundstrom, C. C. et al. Earth planet. Sci. Lett. 128, 407–423 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Shaw, H. R. Am. J. Sci. 272, 870–893 (1972).

    Article  ADS  CAS  Google Scholar 

  23. Iwamori, H. Earth planet. Sci. Lett. 114, 301–313 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Spiegelman, M. & Elliott, T. Earth planet. Sci. Lett. 118, 1–20 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Tanimoto, T. & Stevenson, D. J. J. geophys. Res. 99, 4549–4558 (1994).

    Article  ADS  Google Scholar 

  26. McKenzie, D. Earth planet. Sci. Lett. 74, 81–91 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation at Mid-ocean Ridges (eds Morgan, J. P., Blackman, D. K. & Sinton, J. M.) 183–280 (Geophys. Monogr. No. 71, Am. Geophys. Un., Washington DC, 1992).

    Google Scholar 

  28. Sinton, J. M., Smaglik, S. M., Manohen, J. J. & Macdonald, K. C. J. Geophys. Res. 96, 6133–6155 (1991).

    Article  ADS  Google Scholar 

  29. Schilling, J.-G. et al. Am. J. Sci. 283, 510–586 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Shen, Y. & Forsyth, D. W. J. geophys. Res. 100, 2211–2236 (1995).

    Article  ADS  CAS  Google Scholar 

  31. Blundy, J. D., Falloon, T. F. & Wood, B. J. (abstr.) Eos 74, 658 (1993).

    Google Scholar 

  32. Armstrong, J. T. in Microbeam Analysis—1988 (ed. Newbury, D. E.) 239–246 (San Francisco Press, San Francisco, 1988).

    Google Scholar 

  33. Jarosewich, E., Nelen, J. A. & Norberg, J. A. Smithson. Contr. Earth Sci. 22, 68–72 (1972).

    Google Scholar 

  34. Kress, V. C. & Carmichael, I. S. E. Contr. Miner. Petrol. 108, 82–92 (1991).

    Article  ADS  CAS  Google Scholar 

  35. Lange, R. A. & Carmichael, I. S. E. Geochim. cosmochim. Acta 51, 2931–2946 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, M., Hirschmann, M., Ghiorso, M. et al. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375, 308–311 (1995). https://doi.org/10.1038/375308a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375308a0

  • Springer Nature Limited

This article is cited by

Navigation