Skip to main content
Log in

Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

G-PROTEIN-COUPLED receptors are thought to have an inactive conformation (R), requiring an agonist-induced conformational change for receptor/G-protein coupling1–3. But new evidence suggests a two-state model4–19 in which receptors are in equilibrium between the inactive conformation (R), and a spontaneously active conformation (R*) that can couple to G protein in the absence of ligand (Fig. 1). Classic agonists have a high affinity for R* and increase the concentration of R*, whereas inverse agonists have a high affinity for R and decrease the concentration of R*. Neutral competitive antagonists have equal affinity for R and R* and do not displace the equilibrium, but can competitively antagonize the effects both of agonists and of inverse agonists. The lack of suitable in vivo model systems has restricted the evidence for the existence of inverse agonists to computer simulations7,8 and in vitro systems5,9–12,20–23. We have used a transgenic mouse model in which there is such marked myocardial overexpression of β2-adrenoceptors that a significant population of spontaneously activated receptor (R*) is present, inducing a maximal response without agonist24. We show that the β2-adrenoceptor ligand ICI-118,551 functions as an inverse agonist, providing evidence supporting the existence of inverse agonists and validating the two-state model of G-protein-coupled receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark, A. J. in The Mode of Action of Drugs on Cells (Edward Arnold, London, 1933).

    Google Scholar 

  2. Ahriens, E. J. Arch Int. Pharmacodyn. 99, 32–49 (1954).

    Google Scholar 

  3. Stephenson, R. P. Br. J. Pharmacol. 11, 379–393 (1956).

    CAS  Google Scholar 

  4. De Lean, A., Stadel, J. M. & Lefkowitz, R. J. J. biol. Chem. 255, 7108–7117 (1980).

    CAS  PubMed  Google Scholar 

  5. Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R. J. J. biol. Chem. 268, 4625–4636 (1993).

    CAS  Google Scholar 

  6. Ehlert, F. J. Trends pharmacol. Sci. 7, 28–32 (1986).

    Article  CAS  Google Scholar 

  7. Costa, T., Ogino, Y., Munson, P. J., Onaran, O. & Rodbard, D. Molec. Pharmacol. 41, 549–560 (1992).

    CAS  Google Scholar 

  8. Onaran, H. O., Costa, T. & Rodbard, D. Molec. Pharmacol. 43, 245–255 (1992).

    Google Scholar 

  9. Costa, T. & Herz, A. J. Proc. natn. Acad. Sci. U.S.A. 86, 7321–7325 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Costa, T., Lang, J., Gless, C. & Herz, A. Molec. Pharmacol. 37, 383–394 (1990).

    CAS  Google Scholar 

  11. Samama, P., Pei, G., Costa, T., Cotecchia, S. & Lefkowitz, R. J. Molec. Pharmacol. 45, 390–394 (1994).

    CAS  Google Scholar 

  12. Chidiac, P., Hebert, T. E., Valiquette, M., Dennis, M. & Bouvier, M. Molec. Pharmacol. 45, 490–499 (1994).

    CAS  Google Scholar 

  13. Lefkowitz, R. J., Cotecchia, S., Samama, P. & Costa, T. Trends pharmacol. Sci. 14, 303–307 (1993).

    Article  CAS  Google Scholar 

  14. Schutz, W. & Freissmuth, M. Trends pharmacol. Sci. 13, 376–380 (1992).

    Article  CAS  Google Scholar 

  15. Mewes, T., Dutz, S., Ravens, U. & Jakobs, K. H. Circulation 88, 2916–2922 (1993).

    Article  CAS  Google Scholar 

  16. Gotze, K. & Jakobs, K. H. Eur. J. Pharmacol. 268, 151–158 (1994).

    Article  CAS  Google Scholar 

  17. Monod, J., Wyman, J. & Changeux, J-P. J. molec. Chem. 12, 88–118 (1965).

    CAS  Google Scholar 

  18. Colquhoun, D. in Drug Receptors 149–181 (MacMillan, London, 1973).

    Book  Google Scholar 

  19. Leff, P. Trends pharmacol. Sci. (in the press).

  20. Cerione, R. A. et al. Biochemistry 23, 4519–4525 (1984).

    Article  CAS  Google Scholar 

  21. Senogles, S. E. et al. J. biol. Chem. 262, 4860–4867 (1987).

    CAS  PubMed  Google Scholar 

  22. Barker, E. L., Westphal, R. S., Schmidt, D. & Sanders-Bush, E. J. biol. Chem. 269, 11687–11690 (1994).

    CAS  PubMed  Google Scholar 

  23. Tian, W-N., Duzic, E., Lanier, S. M. & Deth, R. C. Molec. Pharmacol. 45, 524–531 (1994).

    CAS  Google Scholar 

  24. Milano, C. A. et al. Science 264, 582–586 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Arch, J. R. S. & Kaumann, A. J. Mednl Res. Rev. 13, 663–729 (1993).

    Article  CAS  Google Scholar 

  26. Schwartz, D. D. & Eikenburg, D. C. J. Pharmacol. exp. Ther. 244, 11–18 (1988).

    CAS  PubMed  Google Scholar 

  27. Shenker, A. et al. Nature 365, 652–654 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Parma, J. et al. Nature 365, 649–651 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Seeman, P., Guan, H-C. & Van Toi, H. H. M. Nature 365, 441–445 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bond, R., Leff, P., Johnson, T. et al. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor. Nature 374, 272–276 (1995). https://doi.org/10.1038/374272a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374272a0

  • Springer Nature Limited

This article is cited by

Navigation