Skip to main content
Log in

Coalescence reactions of fullerenes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE production of fullerene molecules typically involves extreme high-temperature conditions (electric arcs1, flames2 or resistive heating3), and the reactive processes involved are poorly understood. Once separated4,5, these molecules can undergo several important reactions, including formation of charge-transfer6,7 and adduct8,9 compounds, and the encapsulation of atoms10–12. Here we present evidence for coalescence reactions between fullerene molecules: mass spectrometric measurements on hot, dense vapours of small fullerenes (C60 and C70) reveal the formation of stable higher fullerenes which are multiples of the initial masses. The heat of coalescence is released through emission of small, even-numbered fragments which, in a very dense vapour, are efficiently captured by other coalesced fullerenes. These findings have implications for the mechanisms of fullerene formation and growth, and may open the way to new synthetic routes to selected higher fullerenes and encapsulation compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354 (1990).

    Article  ADS  Google Scholar 

  2. Peters, G. & Jansen, M. Angew. Chem. Int. Ed Engl. 31, 223 (1992).

    Article  Google Scholar 

  3. Howard, J. B., McKinnon, J. T., Makarovsky, Y., Lafleur, A. & Johnson, M. E. Nature 352, 139–141 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Ajie, H. et al. J. phys. Chem. 94, 8630–8633 (1990).

    Article  CAS  Google Scholar 

  5. Taylor, R., Hare, J. P., Abdul-Sada, A. K., Kroto, H. W. J. chem. Soc. Chem. Commun. 1423–1425 (1990).

  6. Ailemand, P.-M. et al. J. Am. chem. Soc. 112, 1050–1051 (1990).

    Google Scholar 

  7. Haddon, R. C. et al. Nature 350, 320–323 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Suzuki, T., Li, Q., Khemani, K. C., Wudl, F. & Almarsson, Ö. Science 254, 1186–1187 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Krusic, P. J., Wasserman, E., Keizer, P. N., Morton, J. R. & Preston, K. F. Science 254, 1183–1185 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Chai, Y. et al. J. phys. Chem. 95, 7564–7568 (1991).

    Article  CAS  Google Scholar 

  11. Weiske, T., Böhme, D. K., Hrusak, J., Krätschmer, W. & Schwarz, H. Angew. Chem. int. Ed Engl. 30, 884–886 (1991).

    Article  Google Scholar 

  12. Ross, M. M. & Callahan, J. H. J. phys. Chem. 95, 5720–5723 (1991).

    Article  CAS  Google Scholar 

  13. Kroto, H. W. Angew. Chem. int. Ed. Engl. 31, 111–129 (1992).

    Article  Google Scholar 

  14. Diederich, F. & Whetten, R. L. Acct. chem. Res. 25, 119–126 (1992).

    Article  CAS  Google Scholar 

  15. Beckhaus, H.-D., Rüchardt, C., Kao, M., Diederich, F. & Foote, C. S. Angew. Chem. int. Ed. Engl. 31, 63–64 (1992).

    Article  Google Scholar 

  16. Stanton, R. E. J. phys. Chem. 96, 111–118 (1992).

    Article  CAS  Google Scholar 

  17. Zhang, B. L., Wang, C. A., Ho, K. M. Chem. Phys. Lett. 193, 225–230 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Adams, G. B., Sankey, O. F., Page, J. B., O'Keeffe, M. & Drabold, D. A. Science 256, 1792–1795 (1992).

    Article  ADS  Google Scholar 

  19. Beck, R. D., St. John, P., Alvarez, M. M., Diederich, F. & Whetten, R. L. J. phys. Chem. 95, 8402–8409 (1991).

    Article  CAS  Google Scholar 

  20. Busmann, H.-G., Lill, Th. & Hertel, I. V. Chem. Phys. Lett. 187, 459–465 (1990).

    Article  ADS  Google Scholar 

  21. Busmann, H.-G., Lill, Th., Reif, B. & Hertel, I. V. Surf. Sci. 272, 146–153 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Yeretzian, C. & Whetten, R. L. Z. Phys. D (in the press).

  23. Maruyama, S., Lee, M. Y., Haufler, R. E., Chai, Y. & Smalley, R. E. Z. Phys. D, 19, 409 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Campbell, E. E. B., Hielscher, A., Ehlich, R., Schyja, V. & Hertel, I. V. in Nuclear Physics Concepts in the Study of Atomic Cluster Physics (eds Schmidt, R., Lutz, H. O. & Dreizler, R.) Lecture Notes in Physics Vol. 404, 185 (Springer, 1992).

    Book  Google Scholar 

  25. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., Smalley, R. E. Nature 318, 162–163 (1985).

    Article  ADS  CAS  Google Scholar 

  26. McElvany, S. W., Ross, M. M. & Callahan, J. H. Acct. chem. Res. 25, 162–168 (1992).

    Article  CAS  Google Scholar 

  27. Jin, C., Guo, T., Chai, Y., Lee, A. & Smalley, R. E. Fullerene Nanowires, Proc. 1st Italian Workshop on Fullerenes, 6–7 February 1992 (eds Taliani, C., Ruani, G. & Zamboni, R.) (World Scientific, 1992).

  28. Smalley, R. E. in Naval Res. Rev. 3, 3–14 (1991).

    Google Scholar 

  29. Wang, S. & Buseck, P. R. Chem. Phys. Lett. 182, 1–4 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeretzian, C., Hansen, K., Diederichi, F. et al. Coalescence reactions of fullerenes. Nature 359, 44–47 (1992). https://doi.org/10.1038/359044a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359044a0

  • Springer Nature Limited

This article is cited by

Navigation